2022 대한소아재활발달의학회 춘계연수강좌

Lower Limb Robotic Rehabilitation

나 동 욱, MD, PhD

재활의학과 교수, 세브란스 재활병원, 연세대학교 의과대학

CBO(Chief Business Officer), 엔젤로보틱스

- · 동작분석실 및 로봇재활치료센터 책임교수
- 소아재활 전문의
- 세브란스 소아재활 전임의
- 세브란스 전공의 수련
- 연세의대 졸업 및 석, 박사 취득
- 연세대학교 재활의학교실 교수

나 동욱 MD, Ph.D

나 동욱 MD, Ph.D

- · 스탠포드 대학교 방문교수(2012-13)
 - MotionLab of Lucile Packard children's hospital, Stanford medical center
 - Bioengineering dept., Stanford univ. (NMBL)
- BMRR(BioMechanics and Robotic Rehabilitation) laboratory

http://biomechanics.yonsei.ac.kr

엔젤로보틱스 창업 (2017~)

Robot-assisted Gait Therapy (RAGT)

Research trends of robotic rehabilitation

PubMed

Research trends of robotic rehabilitation in pediatric patients

PubMed

Principle of robotic rehabilitation

DeLisa's Physical Medicine and Rehabilitation, 6th edition

Strategy using robot for rehabilitation

Challenge-based strategies (Motor practice) Assistive-based strategies (Motor assistance)

Theory of motor learning

- Reflex model : closed-loop-control
- Hierarchical model : pre-programmed instruction & anticipatory-control
 - ➡ Reflex-Hierarchical : Neuro-developmental therapy
- System model : task-oriented approach, importance of interaction with environments

Current gait training by therapists

Trunk control Sitting balance

Standing balance Gait independence with weight shifting

Gait adaptability

??

Lower extremities motor control

Gait pattern

Intensive gait training - Partial Weight Bearing Treadmill Training -

- intensive, repetitive gait training
 - more effective for recovery of gait function
 But, unrealistic massive amount of labor
 by therapists

Robot-assisted Gait Training (RAGT)

Basic assistance strategy for **complete** paraplegics

When the muscles are completely paralyzed

Control variable of the assistive robot is "motion".

 \rightarrow Position control problem.

Basic assistance strategy for **incomplete** paraplegics

When the muscles are weakened

٠

Control variable of the assistive robot is "force".

 \rightarrow Force control problem.

Strategy for **complete & incomplete** paralysis

Joint trajectory-control

Joint torque-control

Challenge-based strategy (Challenging, but Not disappointing!!)

Disease

Injury

Severe impairments

Recovery

Trajectory control Body weight support Treadmill

> Torque control Overground walking

Mild impairments

Challenging task

Task-specificity of motor learning

Types of robot for gait rehabilitation

end-effector

exoskeletons

Tethered robots

(trajectory control)

end effector

Wearable overground exoskeletons (torque assist)

Task-specificity of motor learning

Gassert and Dietz Journal of NeuroEngineering and Rehabilitation (2018) 15:46

RAGT in Cerebral Palsy

Exoskeletal on Treadmill type

- PeLoGAIT trial (Randomized pragmatic crossover design)
- Lokomat[®] (Hocoma, Swiss)
- 16 children (mean 11.3 years, 6.0~15.3) of CP early stop d/t recruitment problem
- GMFCS II~IV
- 5 weeks (3 days/week, 45 min)
 - ➡ no superiority : GMFM, 10MWT, 6MinWT
- RAGT as a single intervention not effective
 Should be embedded in a holistic Tx

Journal of Pediatric Rehabilitation Medicine: An Interdisciplinary Approach 13 (2020) 137-148

Exoskeletal on Treadmill type

- Lokomat[®] (Hocoma, Swiss)
- 182 children (110 ABI, 72 CP), GMFCS I~IV
- evaluated retrospectively in 2 centers
- 20 sessions of RAGT + 20 sessions of PT
- 4 weeks (5 days/week, 45 min of each)
 - ➡ ABI : 6MWT, GMFM
 - ➡ CP : 6MWT, GMFM (only on GMFCS III)

Arch Phys Med Rehabil. 2020 Jan;101(1):106-112.

End-effector type

Figure 1. RAGT with G-EO systems including walking and stair climbing.

- Single arm prospective study
- G-EO robotic system® (Reha Tech., Swiss)
- 17 children (12.83±5.41 years) of CP
- GMFCS II, III
- 10 weeks (3 days/week, 45 min)
 - ➡ improved GMFM(D,E), PBS

Journal of Exercise Therapy and Rehabilitation. 2019;6(3):156-162

End-effector type

- Single arm prospective study
- Morning Walk[®] (Curexo, Korea)
- 22 children (12.4 ± 4.3 years)
- 10 quadriplegia, 6 hemiplegia, 6 diplegia
- 24 sessions (5 days/week, 30 min)
 - ➡ improved FAC
 - ➡ Feasible and safe

Brain Neurorehabil. 2020 Mar;13(1):e6

- 6 cases (13~24 years)
- HAL[®] (CYBERDYNE, Japan)
- GMFCS II~IV
- 12 sessions (2-4 days/week, 20 min)
 - ➡ improved gait speed, cadence, single leg support, 6MinWT, GMFM
 - ➡ Feasible and safe

Brain & Development 40 (2018) 642-648

- single case report
- HAL[®] size S (CYBERDYNE, Japan)

target 145-165cm of height

- 11 years old boy (138cm, 30kg)
- 12 sessions (2-4 days/week, 20 min)
 - → improved gait speed, cadence, step length, 6MinWT, GMFM
 - ➡ Feasible and safe

Brain & Development 42 (2020) 468-472

• 19 children of bilateral & unilateral spastic CP

(9-29 yrs old, height 131cm-168cm)

(GMFCS I~II: 5, GMFCS III~IV: 14)

- HAL[®] (CYBERDYNE, Japan)
- a 20 min **single** sessions

(10 min rest, 20 min attach/detach)

- ➡ immediate improve in 10MWT
 - gait speed, cadence, stride length
 - gait symmetry

• 26 children of bilateral spastic CP

(GMFCS I~II : 17, GMFCS III~IV : 9)

- Ekso GT[®] (Ekso Bionics, USA)
- 30 sessions (45 min/session)

10/2wks - break - 10/2wks - break - 10/2wks

→ no change

- spatiotemporal parameters of gait
- joint kinematics during gait

rontiers n Neurology Front Neurol. 2021 Dec 23;12:724009.

Article

Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy

Seung Ki Kim¹, Dongho Park², Beomki Yoo², Dain Shim², Joong-On Choi², Tae Young Choi² and Eun Sook Park^{2,*}

Researches using Angel Legs M

The Effects of Over-Ground Robot-Assisted Gait Training for Children with Ataxic Cerebral Palsy A Case Report (sensors-21-07875)

Effectiveness of Robotic Exoskeleton-Assisted Gait Training in Spinocerebellar Ataxia: A Case Report(sensors 21-04874)

Assistance of a Person with Muscular Weakness Using a Joint-Torque-Assisting Exoskeletal Robot(applsci-11-03114)

Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy(sensors-21-02087)

MDPI

Researches using Angel Legs M

Closing remarks

Functionality and adoptability for innovative technologies

Role of rehabilitation professionals

Pre-evaluation compatibility for RAGT

Optimizing assist algorithm function, task

Assessment of effects gait efficiency, fitness, kinematics

Choose proper robot for patients exoskeletal, end-effector, wearable

Gait training embodiment

Robots for Entire Rehabilitation Process

injury and disease [Hospitalization]

X Different results may occur depending on the patient's condition

"Thank you for listening."

BMRR Laboratory (BioMechanics and Robotic Rehabilitation)

- http://biomechanics.yonsei.ac.kr
- bmrr.lab@gmail.com

Dong-wook Rha Supervisor

Juntaek Hong Research fellow

Beom Gi Yoo PhD candidate

Da In Shim Joong-on Choi PhD candidate MS candidate