Selective Dorsal Rhizotomy for Hypertonia

Ji Yeoun Lee^{1,2}, Kyu-Chang Wang¹

¹Division of Pediatric Neurosurgery Seoul National University Children's Hospital, Seoul National University ²Department of Anatomy and Cell Biology Seoul National University College of Medicine

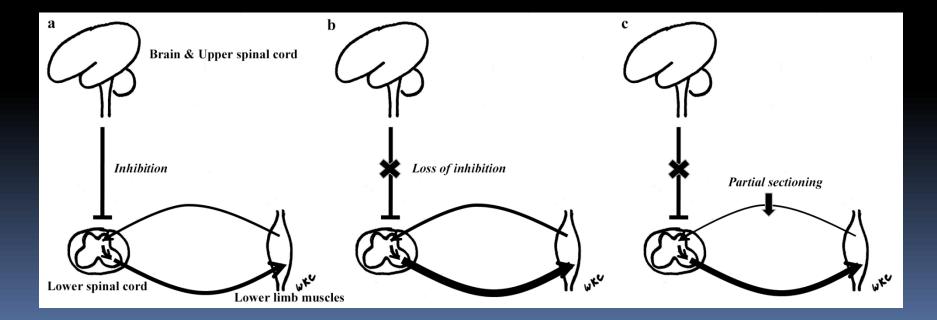
No disclosures to be made.

Contents

- Pathophysiology
- Indication and Contraindication
- Surgical procedure
- Surgical outcome and complications
- FAQ

Surgical Techniques Tested in the Treatment of Spasticity

Procedure	Target	Results
Stereotactic encephalotomy	Globus pallidus Ventrolateral thalamic nuclei Cerebellum	Variable to poor
Cerebellar stimulation	Cerebellum	Poor
Longitudinal myelotomy	Conus medullaris	Variable
Cervical posterior rhizotomy	C1-C3	Slight improvements Significant potential for complications
Selective posterior rhizotomy	Selected roots of L2-S2	Variable, encouraging
Neurectomy	Involved nerves	Variable, high recurrence, possibility of permanent, painful dysesthesias
Tendon lengthening, release or transfer	Contracted or spastic muscle	Variable but generally effective


What is SDR?

The neurosurgical procedure selective dorsal rhizotomy (SDR) can provide permanent relief from spasticity.

In this procedure, neurosurgeons disconnect abnormally functioning nerves from the spinal cord to halt the dysfunctional communication between the patient's muscles and brain.

Pathophysiology

- Sectioning of spinal reflex arc
- To reduce the muscle tone
- By partial severing of sensory roots

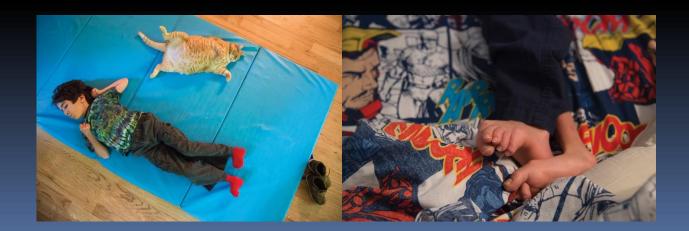
Indication

- Age
- Etiology
- Functional state
 - Spasticity vs rigidity / athetosis / dystonia
 - Severity of spasticity
 - Intelligence
 - U/E weakness
 - Contracture
 - Previous orthopedic surgery
- Spine deformity
- Response to temporary treatment

Indication according to Goal of Surgery

Group I: ambulationGroup II: patient care

Group I: Ambulation Functional Pre-requisite


- Pure or predominant spasticity
- Mild to moderate weakness
- Useful upper extremity motor
- Truncal control
- Preserved cognition
- No or mild contracture or deformity
- No extensive tendon lengthening

Group I Contraindication

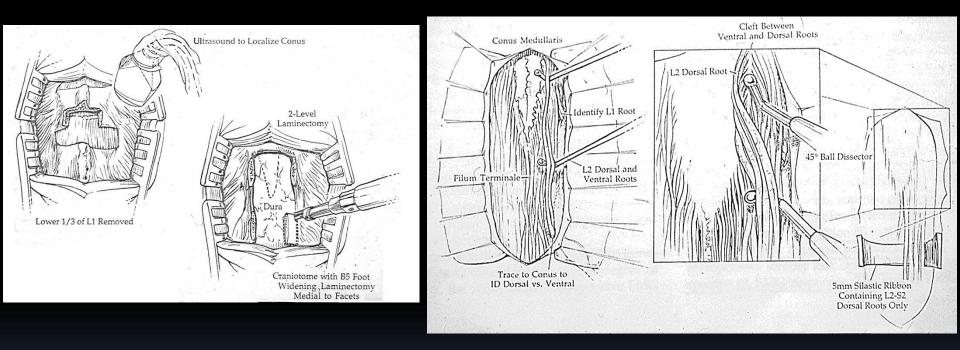
- Mixed or other type (dystonia)
- Severe brain damage
 - Esp. basal ganglia injury
 - Positive primitive responses
- Severe deformities
- History of extensive orthopedic surgery

Group II: patient care

- Contracture
- Subluxation, dislocation
- Deformity
- Skin ulcer
- Voiding care

Contents

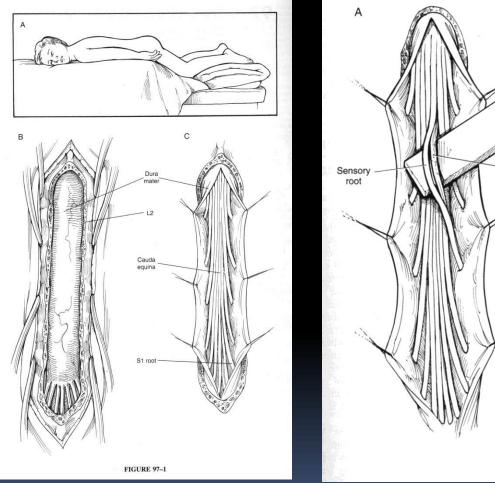
- Pathophysiology
- Indication and Contraindication
- Surgical procedure
- Surgical outcome and complications
- FAQ

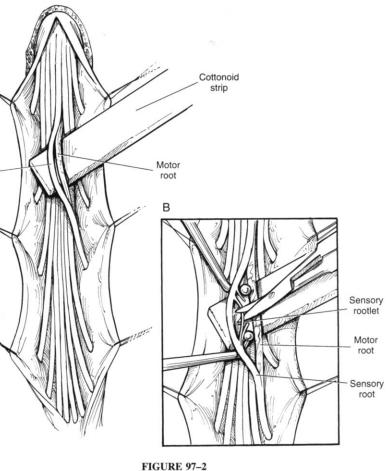

Surgical procedure How we do it in SNUCH

- Laminectomy (1 ~ 1.5 level, expose the tip of conus at the center of bone exposure)
- Separate sensory roots from motor roots
- Save sphincter roots
- Rhizotomy
 - Usually 60 75% for group I
 - Double check for motor and sensory roots

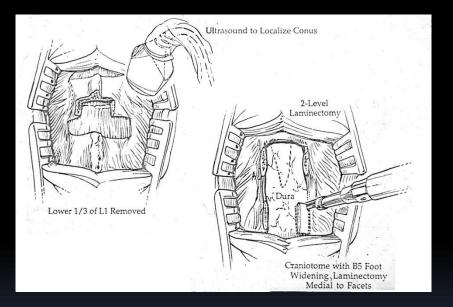
Surgical procedure

- Laminectomy (1 ~ 1.5 level, expose the tip of conus at the center of bone exposure)
- Separate sensory roots from motor roots
- Save sphincter roots
- Rhizotomy
 - Usually 60 75% for group I
 - Double check for motor and sensory roots

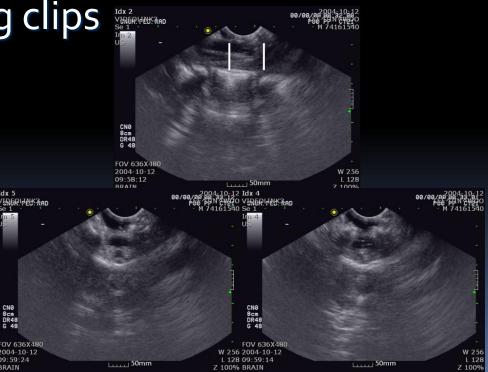

L1-2 Single Level Laminectomy



Extent of bone exposure (Exact identification of rootlets)


- L2-S2 laminotomy/laminectomy
 Peacock et al.
 wide exposure
 precise identification of roots
- L1-2 single level laminectomy
 Park, et al.
 small exposure
 uncertain identification of roots

L2-S2 laminotomy/laminectomy


L1-2 single level laminectomy

- short operation time
 less postoperative weakness
- same degree of spasticity reduction

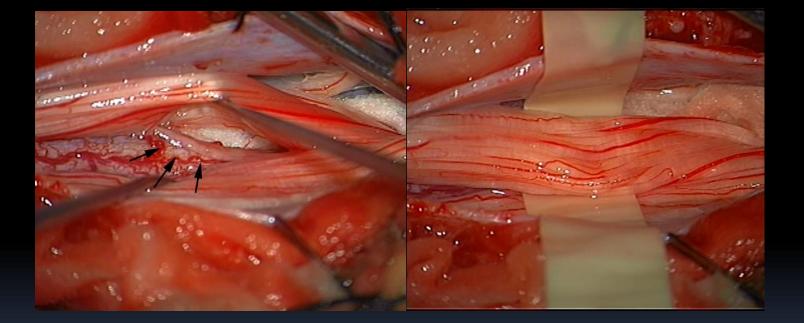
Laminectomy and dural incision (Identification of conus level)

- Preoperative
- Lumbar MRI
- (inspection for other lesions such as lipoma)
- Plain x-ray with marking clips
- Intraoperative
 Portable x-ray
 USG


Surgical procedure

- Laminectomy (1 ~ 1.5 level, expose the tip of conus at the center of bone exposure)
- Separate sensory roots from motor roots
- Save sphincter roots
- Rhizotomy
 - Usually 60 75% for group I
 - Double check for motor and sensory roots

Separation of sensory roots from motor roots



Surgical procedure

- Laminectomy (1 ~ 1.5 level, expose the tip of conus at the center of bone exposure)
- Separate sensory roots from motor roots
- Save sphincter roots
- Rhizotomy
 - Usually 60 75% for group I
 - Double check for motor and sensory roots

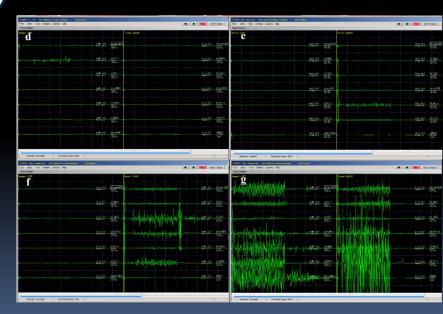
Saving sphincter roots

Surgical procedure

- Laminectomy (1 ~ 1.5 level, expose the tip of conus at the center of bone exposure)
- Separate sensory roots from motor roots
- Save sphincter roots
- Rhizotomy
 - Usually 60 75% for group I
 - Double check for motor and sensory roots

Preparation of Rootlets

EMG response of whole root stimulation
 confirmation: absence of motor rootlets
 EMG: latency
 nerve stimulation


division into rootlets of same size

Intraoperative EMG

Response to tetanic stimulation of reflex threshold of 50 Hz for 1 sec

grading (grade 1-4: sustained)

 o: unsustained or single discharge
 1: stimulated segment
 2: immediately adjacent segments
 3: segments distant to the
 stimulated site
 4: contralateral response

Selection of Roots to Cut

- Divide the roots into rootlets of similar size (natural plane or by needle)
- cut rootlets of higher EMG response grades
- as much as predetermined proportion
 - varies according to the goal of surgery and severity of patients
 - 60 75% in diplegics

Selective Dorsal rhizotomy Result

postoperative dysesthesia for few days immediate reduction of spasticity 'collapse' improved range of motion and velocity recurrence late and minimal in diplegics foot deformity

Selective Dorsal rhizotomy Indirect Effect

upper extremity spasticity
swallowing, drooling
urinary frequency, constipation
cognition

Complication

- **■** < 7%
- sensory loss
- weakness
- voiding difficulty
- spinal deformity
- miscellaneous:
 - wound infection
 - pneumonia (related to prematurity (BPD) ICU care)

Contents

- Pathophysiology
- Indication and Contraindication
- Surgical procedure
- Surgical outcome and complications
- FAQ

Discussion 1 Thoracolumbar MRI

- generally not recommended
- 2 cases with unexpected pathology
 - Iumbosacral lipoma: difficulty in surgery
 - dermoid cyst at L4: save another operation

Discussion 2 Role of Intraoperative EMG

questionnaire study

N=19

- no intraoperative EMG monitoring 3/19
- continue SDR when EMG machine fails during operation 10/19
 - continue only in spastic quadriplegia 4/10
 - such an experience

Steinbok and Kestle, 1996

6/10

Discussion 3 Accurate Level of Root

extensive cross over between L2-S5, even between the right and left in CP

Phillips and Park, 1992; Ojeman et al, 1997

Discussion 4 Number of Roots with Abnormal Response vs. Severity of Spasticity

no evidence of linear relationship

Hays et al, 1998

Discussion 5 Number of Sectioned Roots vs. Outcome

save 'useful spasticity'

remove 'handicapping spasticity'

'minimum necessary': hard to expect
around 50% cut in Group 1

Privat et al, 1976; Shevelev et al, 1996

Discussion 6 Postoperative Weakness

no real weakness
apparent weakness caused by marked reduction of spasticity
may be present transiently
esp., L2-S2 laminotomy/laminectomy
Engsberg et al, 1998

Discussion 7 Impact on Voiding

- high rate (>50%) of neurogenic bladder before operation
- postoperative improvement

Franco et al, 1992; Sweetser et al, 1995; Houle et al, 1998

Discussion 8 Partial Section of S2 Root

- recommended
- not clearly controlled in L1-2 laminectomy
 pudendal mapping for safety

 Lang et al, 1994; Morota et al, 1995; huang et al, 1997

Discussion 9 Limited SDR

L4-S1 roots only via L4-5 laminectomy

generally, not accepted

Lazareff et al, 1990

Discussion 10 Postoperative Pain/Dysesthesia

- epidural morphine
- intrathecal morphine
- systemic morphine and midazolam
- epidural 'morphine plus butorphanol'
- fentanyl in intensive care unit
- not so much discomfort in Korean children
 - Sparkes et al, 1989; Geiduschek et al, 1994; Lawhorn et al, 1994;
 Dews et al, 1996; Park, 2004