Lower extremity orthosis from standing to walking period

나 동욱 **Dong-wook Rha**, MD, PhD Associate Professor BioMechanics and Robotic Rehabilitation Laboratory Severance Rehabilitation Hospital Yonsei University College of Medicine

Importance of Foot and Ankle

More dysfunction in distal than proximal joint (CNS pathology)

Unstable foot induces additional alignment abNL at the hip and knee

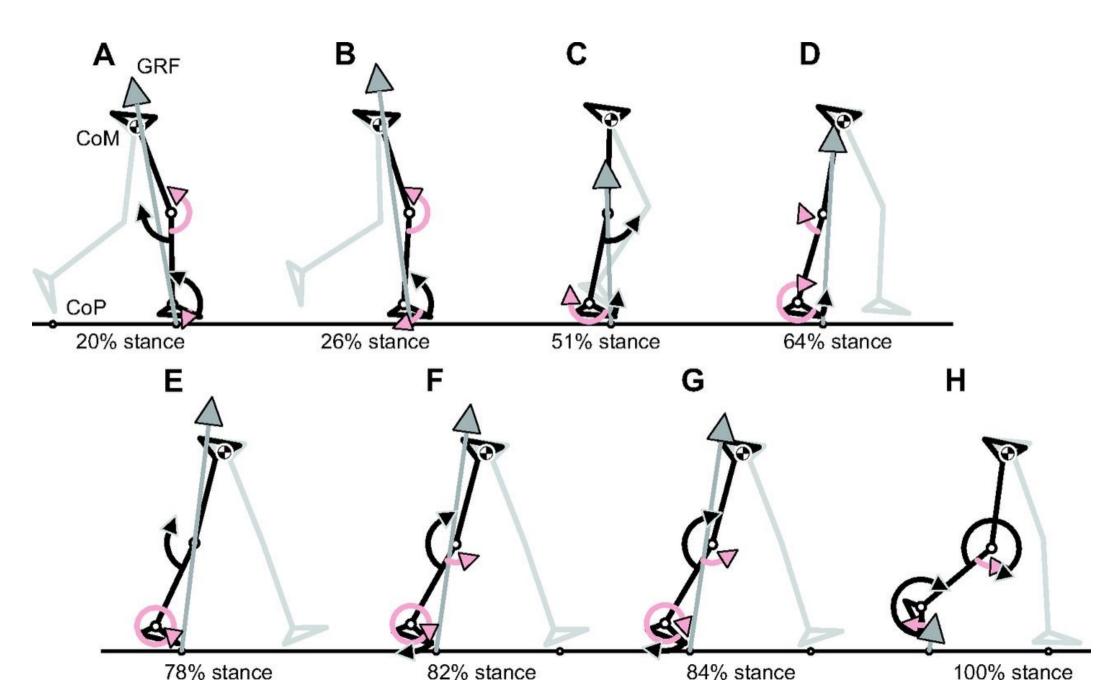
Significant hip and knee flexion contracture cannot be corrected by use of orthoses

Orthotic management is primarily directed toward compensating for foot and ankle dysfunction

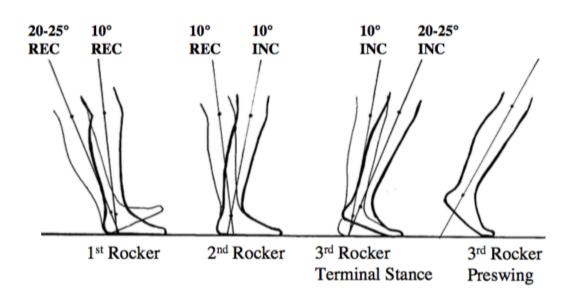
Ankle-Foot Orthosis (AFO)

Normal foot and ankle mechanism during gait

Three rockers


I: very early stance II: vault III: very late stance muscle force muscle force W⁺ R = 0ground reaction ground reaction force ground reaction force force

Heel rocker


Ankle rocker

Forefoot rocker

Ground reaction force during gait

Kinematic of shank

Ankle-Foot Orthosis (AFO)

Progression of foot deformity in spastic CP

Equinus

Equinovarus

Equinovalgus

Planovalgus

Purposes of AFO

Improve gait

Prevent the development and worsening of deformities with growth

&

Protect the outcome of surgical procedure during healing and rehabilitation

Purposes of AFO

Pes equinus

platigrade foot for normal gait mechanism and more stability during gait

improve gait function

Pes equinovalgus, planovalgus

prevent shortening of triceps surge

correction of midfoot and hindfoot deformities

minimize progressive deformities with growth

Improve gait function

Effect of AFO

Kinematic : ankle DF 1

Kinetic : abnormal ankle PF moment during loading response ↓

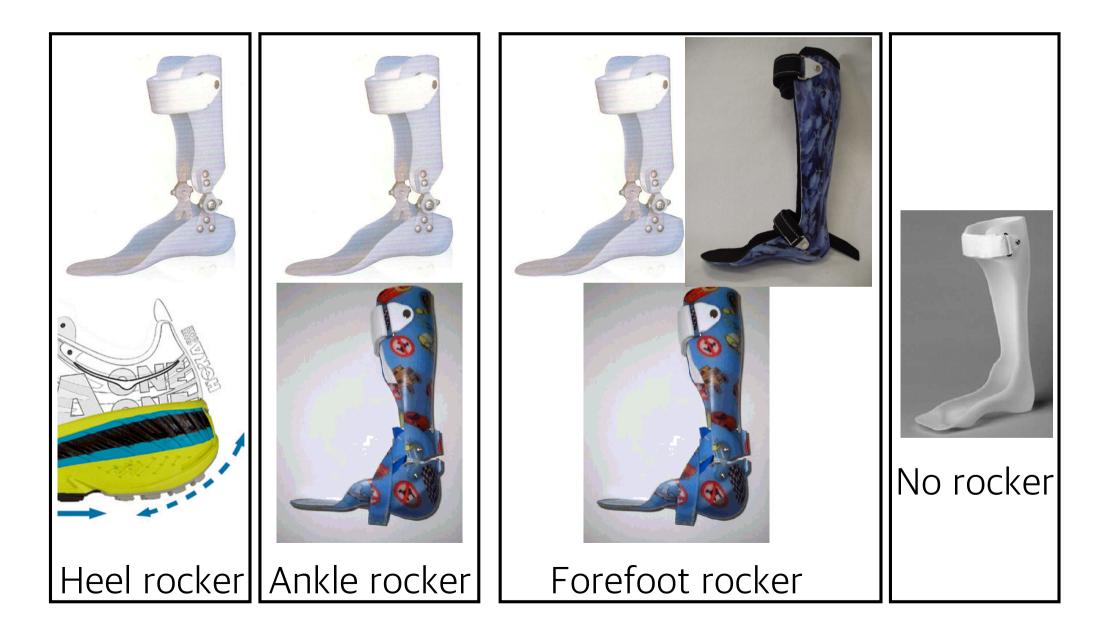
Temporospatial : cadence ↓, step length ↑, velocity↑

Energy expenditure **↓**

Pediatr phys ther 2008;20:207-223

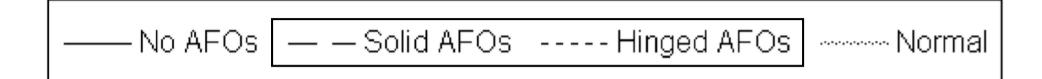
appropriate AFO design

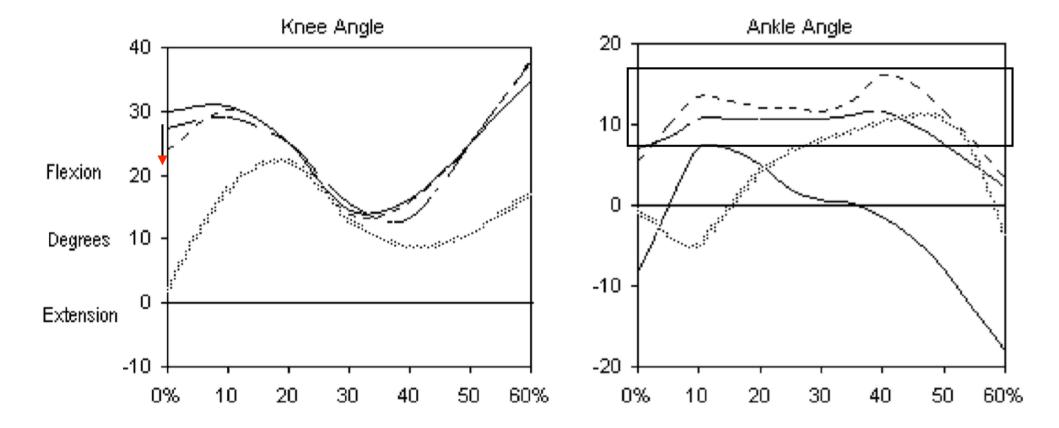
solid



ground reaction

appropriate AFO design




Hinged vs Rigid

Article	No. of Subjects	Characteristics of Sample	Orthosis	Analysis	Results
Buckon et al ¹⁶	16	Spastic diplegia	Rigid, articulated and posterior leaf spring	Gait analysis: kinetics, kinematics, and gait parameters	No significant differences in gait parameters
			opring	una gun parameters	No change in kinetics or kinematic of pelvis and hip
					No significant difference in degree of knee extension at initial contact Increase in peak dorsiflexion with articulated
D 11 C 110			D: 1 1		orthosis
Rethlefsen et al ¹⁹	15	Spastic diplegia	Rigid and articulated	Gait analysis: kinetics, kinematics, and gait parameters	Improved bipedal support and shorter unipedal support with articulated orthosis
					No significant difference in degree of knee extension at initial contact
Rethlefsen et al ²⁰	12	Spastic diplegia	Rigid and articulated	Gait analysis: kinetics, kinematics, and gait parameters	No difference in peak dorsiflexion Increase in peak dorsiflexion with articulated orthosis
				and gait parameters	No significant difference in degree of knee
Radtka et al ¹⁷	12	Spastic diplegia	Rigid and articulated	Gait analysis: kinetics, kinematics, gait parameters, and electromyography	extension at initial contact No significant differences in gait parameters c muscle activity in different phases
					Increase in peak dorsiflexion with articulated orthosis No significant difference in degree of knee
Smiley et al ¹⁸	14	Spastic diplegia	Rigid, articulated, and posterior leaf spring	Gait analysis: kinetics, kinematics, gait parameters, and energy expenditure	extension at initial contact No significant differences in gait parameters, kinetics, kinematics or energy expenditure
Rethlefsen et al ²⁰	21	Spastic diplegia	Rigid and articulated	Gait analysis: kinetics, kinematics,	Increase in peak dorsiflexion with articulated orthosis
				and gait parameters	No significant difference in range of motion o knee
Buckon et al ²²	30	Spastic hemiplegia	Rigid, articulated, and posterior leaf spring	Gait analysis: kinetics, kinematics, gait parameters, and	Increase in peak dorsiflexion with articulated orthosis
			-19	energy expenditure	Simificant increase in gait valority with
					Significant increase in gait velocity with articulated orthosis Reduction in energy expenditure with articulated orthosis

(Pediatr Phys Ther 2012;24:308-312)

Hinged vs Rigid

Gait and Posture 21 (2005) 303–310

selection of Ankle angle

Shortness of tri-jointed (knee, ankle & subtalar) **GCM** musculotendinous unit

less plantarflexion and excessive dorsiflexion

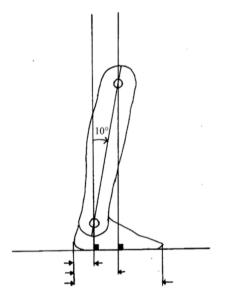
- Excessive tibial progression during loading response
- taken up too much at ankle and subtalar joints
- insufficient length at knee joint to allow extension during midstance, terminal stance and terminal swing phase

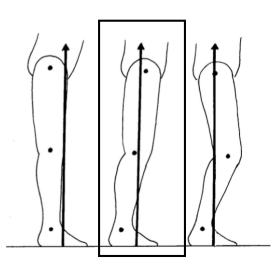
selection of Ankle angle

Shortness of tri-jointed **GCM** musculotendinous unit

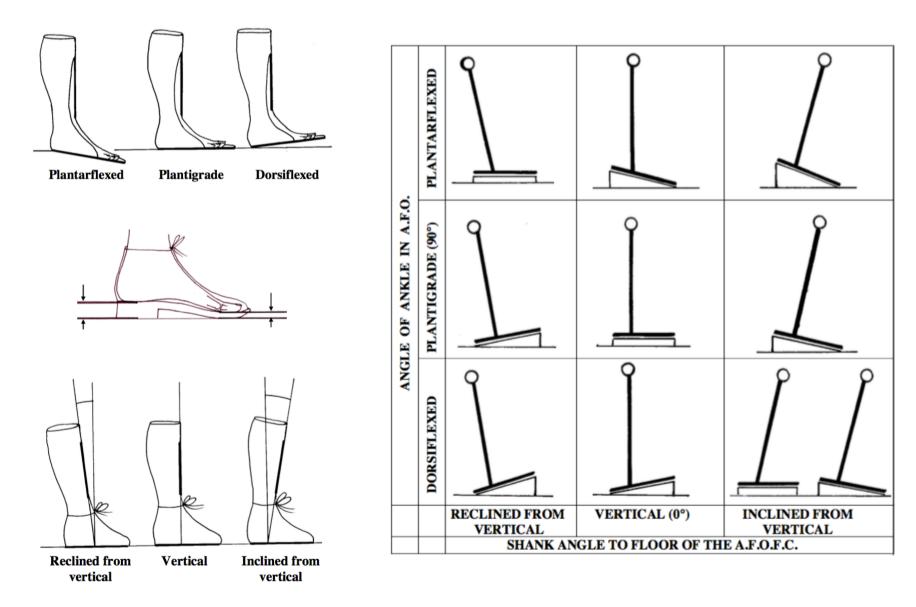
less plantarflexion and excessive dorsiflexion

- overstretch of sarcomere
- insufficient power production, esp. for concentric contraction

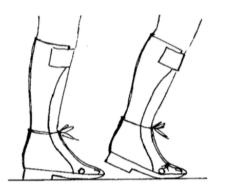

Appropriate shank inclination

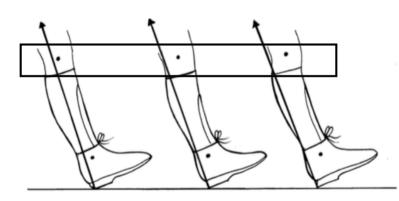

about 10 degrees

normal shank inclination before heel lift

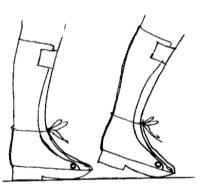

knee joint center over the middle of the foot

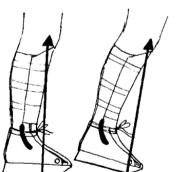
knee vs. hip extension moment




Ankle angle of AFO & Shank angle of AFO-shoe combination

Sole & Heel design

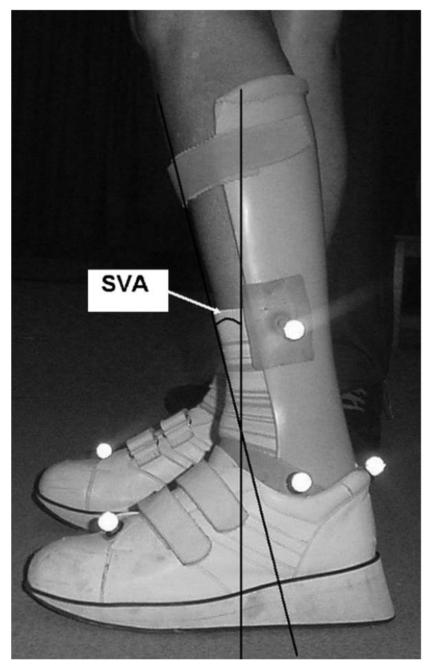

flexible, flat

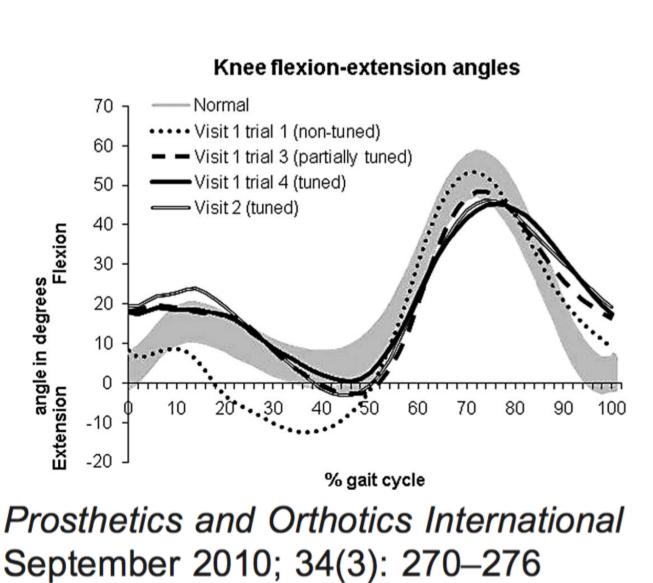

Plain Heel

Negative Heel

Positive Heel

stiff, rounded




stiff, point-loading

Heel rocker

Forefoot rocker

The effects of tuning an Ankle-Foot Orthosis Footwear Combination on kinematics and kinetics of the knee joint of an adult with hemiplegia

Minimize progressive deformities with growth

Prevent shortening of triceps surge

[Intervention Review]

Stretch for the treatment and prevention of contractures

Owen M Katalinic¹, Lisa A Harvey², Robert D Herbert³, Anne M Moseley³, Natasha A Lannin¹, Karl Schurr⁴

¹Rehabilitation Studies Unit, Northern Clinical School, Sydney Medical School, The University of Sydney, Ryde, Australia. ²Rehabilitation Studies Unit, Northern Clinical School, Sydney Medical School, The University of Sydney, Ryde, Australia. ³The George Institute for International Health, Sydney, Australia. ⁴Physiotherapy Department, Bankstown Hospital, Bankstown, Australia

Contact address: Owen M Katalinic, Rehabilitation Studies Unit, Northern Clinical School, Sydney Medical School, The University of Sydney, PO Box 6, Ryde, NSW, 1680, Australia. o.katalinic@usyd.edu.au.

Editorial group: Cochrane Musculoskeletal Group. **Publication status and date:** New, published in Issue 9, 2010. **Review content assessed as up-to-date:** 14 April 2009.

Main results

Thirty-five studies with 1391 participants met the inclusion criteria. No study performed stretch for more than seven months. In people with neurological conditions, there was moderate to high quality evidence to indicate that stretch does not have clinically important immediate (mean difference 3 °; 95% CI 0 to 7), short-term (mean difference 1 °; 95% CI 0 to 3) or long-term (mean difference 0 °; 95% CI -2 to 2) effects on joint mobility. The results were similar for people with non-neurological conditions. For all conditions, there is little or no effect of stretch on pain, spasticity, activity limitation, participation restriction or quality of life.

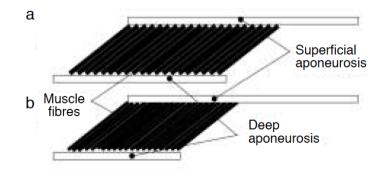
Authors' conclusions

Stretch does not have clinically important effects on joint mobility in people with, or at risk of, contractures if performed for less than seven months. The effects of stretch performed for periods longer than seven months have not been investigated.

Stretching with Children with Cerebral Palsy: What Do We Know and Where Are We Going?

TABLE 1

Summary of Studies-Interventions, Participants, and Results


Study	Level of Evidence* and Study Design	Participants	Intervention	Outcome Measures	Results
McPherson et al ²⁴	Single subject design†	Four children with cerebral palsy (10–18 yr)	Passive stretching and therapeutic positioning Year 1: 60 sec knee extension stretch, 5 repetitions, 3×/d, 5 d/wk Year 2: prone or supine standing devices for 1 hr/d	Hip extension ROM (goniometer) for the study Muscle tone with a device specifically designed	Knee extension increased an average of 4 to 9° during the treatment periods and decreased an average of 5 to 10° during the nontreatment periods SS not tested Decrease in muscle tone during second year of study
Miedaner et al ²⁵	Single subject, randomized cross- over design	13 persons with cerebral palsy (6–20 yr) severe cognitive and physical impairments	Passive stretching 20–60 sec stretch, five repetitions, 5 d/wk and 2 d/wk	Passive hip, knee, ankle, and forefoot ROM (goniometer)	NS for six of the seven ROM measurements right popliteal angle increased following the higher frequency intervention (p < 0.05)
Tremblay et al ¹⁹	Level II Small RCT	21 children with spastic cerebral palsy (3–14 yr)	Passive stretch One occasion for 30 min on tilt table for ankle dorsiflexion stretch	Quality of passive ankle movement (Kin Com dynamometer and surface electrodes) Quality of triceps surae contraction (Kin Com dynamometer and surface electrodes)	Decreased resistance to passive movements up to 35 min after stretch (p < 0.05) Decreased EMG response during passive movements up to 35 min after stretch (p < 0.05)
Richards et al ²⁰	Level II Small RCT	19 children with spastic hemiplegia or diplegia (3–13 yr)	Passive stretch One occasion on tilt table 30 sec for ankle dorsiflexion stretch	Muscle activation of tibialis anterior (EMG) Gait analysis (video recording) Gait (Spastic Locomotion Disordered Index)	Improved activation of tibialis anterior ($p < 0.01$) NS NS
Fragala et al ²³	Single subject design	7 children and adolescents with cerebral palsy (4–18 y) GMFCS levels IV or V	 Passive stretching and therapeutic positioning 40–60 s, 3 repetitions, 1–2×/wk and routine positioning in classrooms (ie, use of wheelchairs, reclined seats, supine lying and side lying. Standing devices were not used) 	Knee and hip extension ROM (goniometer)	No consistent changes in ROM across participants
O'Dwyer et al ²¹	Level II small RCT	15 individuals with spastic cerebral palsy (6–19 y)	Passive stretching 30 min stretch, $3 \times / wk$ for 42 d	Contracture of triceps surae (passive torque of ankle joint)	NS Reduction in spasticity ($p < 0.025$)
Darrah et al ²²	Level IV Cohort study without control group	23 adolescents with cerebral palsy (11–20 y)	Active stretching Stretching program for hamstrings, quadriceps, hip adductors, internal rotators, and ankle plantar flexors (10–15 sec hold) 3×/wk for 10 wk	Spasticity of triceps surae (tonic stretch reflex) Flexibility of hamstring muscles (sit and reach test) Flexibility of hip adductors (intermalleolar distance)	NS

Stretching GCM

J Appl Physiol 111: 435-442, 2011.

Pennation angle : about 25 deg at resting

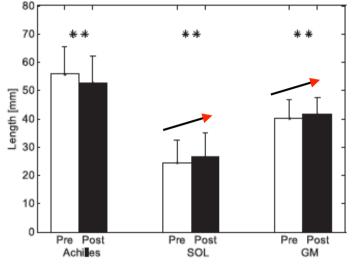


Fig. 6. Comparisons of the Achilles tendon resting length and SOL and GM fascicle lengths measured at full knee extension and 0° ankle dorsiflexion before and after the 6-wk treatment. ** Significant difference with P < 0.01.

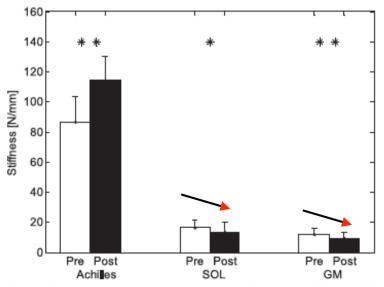


Fig. 7. Comparisons of the Achilles tendon stiffness and SOL and GM fascicular stiffness lengths measured at full knee extension and 0° ankle dorsiflexion before and after the 6-wk treatment. *Significant difference with P < 0.05; **significant difference with P < 0.01.

Effects of ankle-foot braces on medial gastrocnemius morphometrics and gait in children with cerebral palsy

 $Matthias \ H\"osl^{1,2} \textcircled{o} \cdot Harald \ B\"ohm^1 \cdot Adamantios \ Arampatzis^2 \cdot Leonhard \ D\"oderlein^1$

CrossMark

16 ± 4 weeks after ankle–foot bracing.

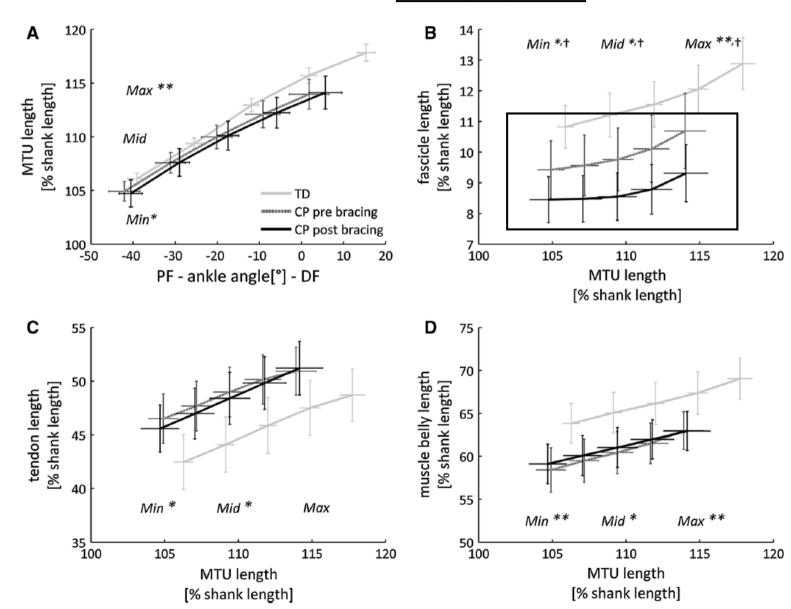
less extensibility than controls. Brace wear <u>increased pas-</u> sive dorsiflexion primarily with the knees flexed. During gait, children walked faster and foot lift in swing improved. MG muscle belly and tendon length showed little change, but <u>fascicles</u> further shortened (-11 %) and muscle thickness (-8 %) decreased.

Table 2 Normalised muscle morphometrics of typically developing children (TD) and children with spastic cerebral palsy (CP), as well as changes after bracing (post-pre) in CP

	Degree of MTU stretch TD		СР		CP post bracing		
		Mean (SD)	Mean (SD)	ES	Mean Δ	95 % CI	ES
MTU length [% shank]	Min	106.1 (1.2)	104.9 (2.1)*	0.7	-0.2	[-1.6, 1.2]	0.1
	Matched mid	109.4 (0.0)	109.4 (2.3)	-	-	-	-
	Max	117.8 (1.8)	114.0 (3.1)**	1.6	0.2	[-1.7, 2.0]	0.2
Muscle belly length [% shank]	Min	63.8 (5.2)	58.4 (5.8)**	1.0	0.7	[-0.7, 2.0]	0.3
	Matched mid	65.2 (5.5)	60.4 (5.5)*	0.9	0.5	[-0.7, 1.7]	0.2
	Max	69.1 (5.4)	63.0 (4.9)**	1.2	0.1	[-1.4, -1.4]	0.0
Muscle belly thickness [% shank]	Min	4.4 (0.5)	3.9 (0.8)*	0.8	-0.3	[-0.6, 0.0]	0.5
	Max	4.2 (0.5)	3.7 (0.8)	0.7	-0.3 [†]	[-0.6, -0.1]	0.6
Fascicle length [% shank]	Min	10.8 (1.6)	9.4 (2.1)*	0.7	-1.0^{\dagger}	[-2.0, -0.1]	0.6
	Matched mid	11.3 (1.6)	9.8 (2.3)*	0.7	-1.1^{+}	[-2.2, -0.1]	0.6
	Max	12.9 (1.9)	10.7 (2.7)**	0.8	-1.5^{\dagger}	[-2.5, -0.2]	0.6
Fascicle angle [°]	Min	24.3 (4.1)	25.0 (4.9)	0.2	1.0	[-1.5, 3.6]	0.2
	Max	19.2 (3.2)	21.4 (5.7)	0.5	0.7	[-2.0, 3.3]	0.1
Tendon length [% shank]	Min	42.4 (5.7)	46.4 (5.0)*	0.7	-0.9	[-2.5, 0.8]	0.3
	Matched mid	44.2 (5.5)	49.0 (5.2)*	0.9	-0.5	[-1.7, 0.7]	0.2
	Max	49.0 (5.4)	51.3 (5.1)	0.4	0.1	[-1.8, 1.9]	0.0

J Child Orthop

ORIGINAL CLINICAL ARTICLE


Effects of ankle–foot braces on medial gastrocnemius morphometrics and gait in children with cerebral palsy

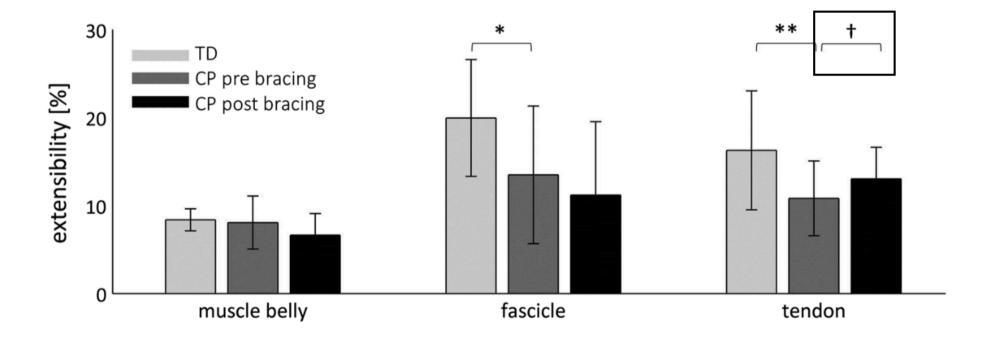
Matthias Hösl^{1,2}[©] · Harald Böhm¹ · Adamantios Arampatzis² · Leonhard Döderlein¹

CrossMark

16 ± 4 weeks after ankle–foot bracing.

less extensibility than controls. Brace wear <u>increased pas</u>sive dorsiflexion primarily with the knees flexed. During gait, children walked faster and foot lift in swing improved. MG muscle belly and tendon length showed little change, but fascicles further shortened (-11 %) and muscle thickness (-8 %) decreased.

ORIGINAL CLINICAL ARTICLE


Effects of ankle–foot braces on medial gastrocnemius morphometrics and gait in children with cerebral palsy

Matthias Hösl^{1,2} · Harald Böhm¹ · Adamantios Arampatzis² · Leonhard Döderlein¹

CrossMark

16 ± 4 weeks after ankle–foot bracing.

less extensibility than controls. Brace wear <u>increased pas-</u> sive dorsiflexion primarily with the knees flexed. During gait, children walked faster and foot lift in swing improved. MG muscle belly and tendon length showed little change, but <u>fascicles</u> further shortened (-11 %) and muscle thickness (-8 %) decreased.

Correction of foot deformities

Progression of foot deformity in spastic CP

Equinus

Equinovarus

Equinovalgus

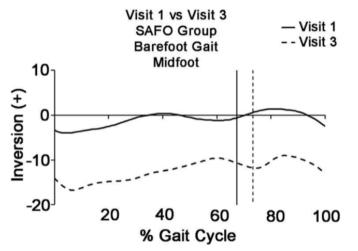
Planovalgus

Impact of Ankle-Foot Orthoses on Static Foot Alignment in Children with Cerebral Palsy J Bone Joint Surg Am. 2007;89:806-13

	Absolute Value Change	
Measurement	(Orthotic Value – Barefoot Value)*	P Value
Hindfoot		
Calcaneal pitch (deg)	2.34 ± 1.98	p < 0.0001
Talocalcaneal angle (deg)	3.61 ± 2.91	p < 0.0001
Midfoot		
Naviculocuboid overlap (%)	9.39 ± 2.91	p < 0.0001
Talonavicular coverage angle (deg)	5.45 ± 5.09	p < 0.0001
Forefoot		
Lateral talus-first metatarsal angle (deg)	4.91 ± 4.25	p < 0.0001
Anteroposterior talus-first metatarsal angle (deg)	5.32 ± 4.67	p < 0.0001

102 patients (160 feet), 5.1~18.7 years ambulatory

Impact of Ankle-Foot Orthoses on Static Foot Alignment in Children with Cerebral Palsy J Bone Joint Surg Am. 2007;89:806-13


ABLE III Segmental Alignm	ent of the Foot on Radiographs: Categorical Data fo	or Barefoot and Orthotic Conditions
Deformity	Number of Feet with Deformity in Barefoot Condition*	Number of Feet with Correction to Normal in Orthosis†
Hindfoot		
Calcaneus	5 (3.1%)	1 (20.0%)
Equinus	85 (53.1%)	12 (14.1%)
Valgus	16 (10.0%)	7 (43.8%)
Varus	70 (43.8%)	4 (5.7%)
Midfoot		
Pronation	59 (36.9%)	14 (23.7%)
Supination	50 (31.3%)	9 (18.0%)
Abduction	58 (36.3%)	15 (25.9%)
Adduction	35 (21.9%)	5 (14.3%)
Forefoot		
Planus	70 (43.8%)	25 (35.7%)
Cavus	27 (16.9%)	5 (18.5%)
Abduction	40 (25.0%)	10 (25.0%)
Adduction	48 (30.0%)	4 (8.3%)

*The percentages are based on the total number of feet in the study (160). †The percentages are based on the number of feet with each deformity as shown in the previous column.

102 patients (160 feet), 5.1~18.7 years ambulatory

Long-Term Effects of Orthoses Use on the Changes of Foot and Ankle Joint Motions of Children With Spastic Cerebral Palsy

Xue-Cheng Liu, MD, PhD, David Embrey, PhD, PT, Channing Tassone, MD, Kim Zvara, MD, Brenna Brandsma, DPT, Roger Lyon, MD, Karin Goodfriend, MD, Sergey Tarima, PhD, John Thometz, MD

Figure 1. Significant differences in mid-foot segment motion in the coronal plane for the SAFO barefoot gait between first and final visits. SAFO = solid ankle foot orthosis.

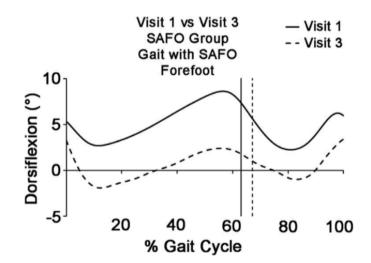


Figure 2. Significant differences in mid-foot segment motion in the sagittal plane for the SAFO between first and final visits. SAFO = solid ankle foot orthosis.

PM R 2017, ePub

"Thank you for listening."

BMRR Laboratory (BioMechanics and Robotic Rehabilitation)

http://biomechanics.yonsei.ac.kr

bmrr.lab@gmail.com

Dong-wook Rha

Supervisor

Han Kyul Park Research fellow

Hanseung Woo Research assistant

Dong Ho Park

Beom Gi Yoo Research assistant Research assistant

Don Shin Lee Engineer

Young Chea Chang Orthotist

