Neuroimaging for Perinatal Brain Injury

Ji Hye Kim, M.D.

Department of Radiology, Sungkyunkwan University School of Medicine, Samsung Medical Center

Neonatal Hypoxic Ischemic Encephalopathy (HIE)

- Major perinatal cause of neurological morbidity
- More risk in lower age & birth weight
- Improved survival of VLBW infants (<1.5 kg)</p>
- Preterm survivors with long term deficits 25%; permanent motor impairment (CP) 25–50%; cognitive & learning disabilities

Pathophysiology

Asphyxia

Impaired exchange of O₂ and CO₂

- Diminished blood O₂ (hypoxia)
- Increased blood CO₂ (hypercarbia)
- Decreased systemic blood pressure
- Acidosis

Impaired exchange of O₂ and CO₂

- Diminished blood O₂ (hypoxia)
- Increased blood CO₂ (hypercarbia)
- Decreased systemic blood pressure
- Acidosis

Impaired cerebral autoregulation
>> Pressure passive blood flow

Asphyxia

Impaired exchange of O_2 and CO_2

- Diminished blood O₂ (hypoxia)
- Increased blood CO₂ (hypercarbia)
- Decreased systemic blood pressure
- Acidosis
 + Impaired cerebral autoregulation

Cerebral hypoperfusion

Hypoxic Ischemic Encephalopathy

Perinatal Asphyxia

Intrauterine asphyxia

- Interrupted placental blood flow & gas exchange
- Impaired maternal oxygenation
- Disrupted umbilical circulation

Postnatal asphyxia

- Severe RDS
- Pneumonia
- Meconium aspiration
- Congenital heart anomalies

Other Factors

Maternal-fetal infection;

- risk factor for CP in term
- poor neurologic outcome in preterm
- neuroinflammatory mediators (endotoxin, cytotoxic cytokin) exacerbate ischemic insult

Genetic effect;

- single nucleotide polymorphisms (endothelial NO synthase A(i922)G, factor VII (Arg353Gln), del(i323)10bp-ins, lymphotoxin *a* (Thr26Asn)) associated with CP in preterm

Imaging modalities

Imaging modalities for neonatal brain

USG
 MR imaging

 Conventional imaging
 DWI-DTI
 Perfusion imaging
 MR spectroscopy
 Functional MRI

US for neonatal brain

- Bedside screening for unstable neonate
- Convenient, noninvasive, low-cost
- No radiation exposure
- Doppler interrogation

- Operator dependent
- Less sensitive
- Non-specific

LOGIQ E9

MR Imaging for Neonatal Brain

- Study of choice for CNS evaluation
- Natural sleep or sedation with monitoring
- MR compatible incubator & coil
- T2WI ;longer TR/TE (high water & lower myelin/lipid content of newborn brain)
- T1WI; fast IR or 3D gradient > SE in 3T
- IV contrast injection is not recommended

Sagittal T1WI, axial FLAIR, fast spin echo T2WI, fast inversion recovery T1WI, DWI, Grad echo

Imaging Findings of Neonatal HIE

Regional selectivity

Selective vulnerability depending on

- Severity/duration of hypoperfusion event

Mild to moderate vs. severe hypoperfusion

- Degree of brain maturation

Preterm vs. term neonates

 Term infants; excitotoxic neuronal injury (deep gray, perirolandic cortex)
 Premature infant; developing oligodendrocyte, subplate neuron

Mild to moderate hypoperfusion ; intervascular (watershed) zones injury

- Different configuration of vascular supply & regional metabolism
 - Term; parasagittal
 - Preterm; periventricular

- Christine P. et. al. RadioGraphics 2006

Spectrum of WM injury on Neuroimaging

Focal cystic necrotic lesions (PVL)
 Focal non-cavitary injury
 Diffuse Excessive High Signal Intensity of

white matter (DEHSI)

Selective vulnerability to mild to moderate hypoperfusion in preemie ;PVWM

 PVL; echodensity initially & hypoechoic cavitations (<u>2-6 weeks</u>) when necrotic tissue begins to dissolve.

PVL-US MR images

FU 2weeks later

End-stage PVL

9-year-old girl with cerebral palsy, developmental delay GP 31W+4, 1.4Kg, twin, NICU care for 2 months

Non-cavitary lesions

T1WI

T2WI

DWI

ADC

Relatively poor sensitivity for non-cavitary white matter lesions.

Up to 70% of hypoxic-ischemic WM lesions are missed in the acute phase on US.

-Hope PL, et al. Dev Med Child Neurol 1988

Maturation process

Serial MR imaging

- Less than 30 wks GA scan: DEHSI (-)
- Near term scan: DEHSI (+)

Griffiths Mental Developmental Scales

- No correlation between DEHSI and DQs at 18-36 Mo.

- Dyet et al. Pediatrics 2006

Diffuse white matter injury

Increased ADCs on DWI

- ADC DEHSI > ADC normal WM

- ADC DEHSI = ADC overt WM pathology

- Decreased FA on DTI
 - Reduction in myelination
 - Axonal damage

- Counsell et al. Pediatrics 2006
- Skiold et al. Acta Paediatr 2010

Mild to moderate hypoperfusion in term baby;

Parasagittal cortical and subcortical injury

Serial US of parasagittal injury

1W

2 W

4 W

Acute parasagittal injury

Parasagittal injury -evolution

Ulegyria in late parasagittal injury

Severe hypotension, prolonged asphyxia

Deep gray, myelinated WM (1 neurotransmitter receptors)

- Thalami & brainstem in immature brain
- Lateral thalami, globus pallidus, posterior putamina, hippocampi, brainstem,
 - & perirolandic cortex in term infants

26w, incarceration during C/S

Sagittal

36wks 2990g, Cardiac arrest, CPR 20 min.

and a set of the set o

Day 1

Day 8

Day 20

Term neonate, birth asphyxia

Absent PLIC, Hyperintense BG & thalami, Diffusion restriction

Term baby, birth asphyxia

Acute perinatal injury, DWI-ADC map

DWI

F/U images after 2 months

FLAIR

Hypoxic Ischemic Encephalopathy

Nonketotic Hyperglycinemia

Nonketotic Hyperglycinemia

HIE vs. Leigh's syndrome

Neonatal Disorders Mimicking HIE on MRI

- Neonatal adrenoleukodystrphy
- Primary lactic acidosis
- Urea cycle disorder
- Krabbe disease
- Maple syrup urine disease
- Nonketotic hyperglycinemia

Lack of birth asphyxia, symptom free interval, prolonged or recurrent episode of acute encephalopathy, abnormal lab. findings favor metabolic insult rather than HIE

and a state of the second state

Intracranial Hemorrhage in Preterm Infants

- Pressure-passive cerebral circulation
- Fluctuations in cerebral blood flow
- Fragile germinal matrix microvasculature
- Derangements of coagulation

-Roland EH. Neurol Clin 2003

Germinal Matrix Hemorrhage

Timing of GMH-IVH

Within 1st day of life : 36-50%
On 2nd day : 25-30%
By day 6 : 90%
After 1 week :5%

USG for GMH-IVH

Routine screening: on 4-7 days

- F/U for IVH : 1wk interval
- Anytime with suspected ICH
- At 3 months for delayed ventriculomegaly

GMH-IVH, **US**

IVH grade 3

Periventricular Hemorrhagic Infarction

Venous infarct (WM drained by medullary v. >> v. of GM >> terminal v.)
Interruption of projection/associated fibers
Injury of oligodendroglial cells & subplate neurons
Myelination/ cognitive, attention deficit

Grade vs. Prognosis

Grade	1	2	3	4
Mortality rate (%)	15	20	40	60
Hydrocephalus (%)	5	25	55	80
Neurologic sequale (%)	15	30	40	90

-Volpe JJ. Ed. Neurology of the newborn 1987

Poor prognosis in prior hypoxic-ischemic insults, hydrocephalus, & periventricular hemorrhagic infarction -Volpe JJ. Ed. Ann Neurol. 1989

Prediction of Neuromotor Outcome in Perinatal Asphyxia: Evaluation of MR Scoring Systems

Score	Finding
Basal gang	dia (BG)
0 =	Normal or isolated focal cortical infarct
1 =	Abnormal signal in thalamus
2 =	Abnormal signal in thalamus and lentiform nucleus
3 =	Abnormal signal in thalamus, lentiform nucleus, and perirolandic cortex
4 =	More extensive involvement
Watershed	l (W)
0 =	Normal
1 =	Single focal infarction
2 =	Abnormal signal in anterior or posterior watershed white matter
3 =	Abnormal signal in anterior or posterior watershed cortex and white matter

Basal ganglia/watershed (BG/W)

0 -	Normal
0 -	Normai
1 =	Abnormal signal in basal ganglia or thalamu
2 =	Abnormal signal in cortex
3 =	Abnormal signal in cortex and basal nuclei
	(basal ganglia or thalami)
4 =	Abnormal signal in entire cortex and basal
	nuclei

Enhancement (E) 0 = No enhancement

1 =	Enhancement in white matter only
2 =	Enhancement in deep gray matter nuclei

- 3 = Enhancement in cerebral cortex
- 4 = Enhancement in cortex and deep gray matter or white matter

- 4 MR scoring systems
- 51 asphyxiated term neonates
- 3 MR sequences; T1WI, 1st echo T2WI, 2nd echo T2WI
- Neuromotor examinations at 3/12 M, cognitive development at 12 M
 BG/W score, first-echo T2WI; the most useful for predicting outcome
 T1WI & first-echo T2WI ; during 1st postnatal week
 2ND echo T2WI ; during 2nd postnatal week

- Barkovich AJ, et al. AJNR 1998

Neonatal MRI to Predict Neurodevelopmental Outcomes in Preterm Infants

- 167 preterms (gestational age < 30 weeks)
- White-matter (WM) & gray-matter (GM) abnormalities on <u>MRI at term equivalent</u>
- Risks of severe cognitive delay, severe psychomotor delay, cerebral palsy, neurosensory impairment <u>at 2 years of corrected age</u>
- Moderate- to-severe <u>WM abnormalities</u> on MRI were significant <u>predictors of severe motor delay</u> <u>& cerebral palsy</u>

-Woodward LJ, et al N Engl J Med 2006

Standardized scoring system (3-point scales)

- WM abnormality; signal abnormality, volume loss, cystic abnormalities, ventricular dilatation, thinning of corpus callosum
- GM abnormality; signal abnormality, gyral maturation, size of subarachnoid space
- Categorize according to composite scores

-WM; none(5-6), mild(7-9), moderate(10-12), severe(13-15)

-GM;normal(3-5), abnormal(6-9)

-Woodward LJ, et al. N Engl J Med 2006

Timing of imaging for neonatal encephalopathy

Early diagnosis

- US screening & F/U vs. MRI
- Screening MRI before discharge
- Late MRI

- Evolution of lesions & additional detection

- Prediction of patient outcome

39W, meconium aspiration

Day 1

Day 6

MR images after 2months

FLAIR

T2WI

MRI obtained during early postnatal period

Sequential MR imaging in neonatal encephalopathy in first 2 weeks of life

• Dav, FA, 3eigenvalues of diffusion tensor, metabolite ratio at different locations

• None/subtle changes on T1WI

Diffusion/MRS changes until day 5 & normalized
Simultaneous appearance of diffusion restriction & pseudonormalization

-Barkovich AJ, et al. AJNR 2006

T1WI

ADC

MRS

Hypoxic ischemic injury

Term infant at 2nd day of life

Encephalomalacia after asphyxia

Screening MRI at term equivalent

High Risk Preterm Screening MRI

Indications in SMC NICU

High risk preemie (< 32 wks or < 1500g)

- corrected GA>35WK
- before discharge

Any suspected brain lesion

- HIE, metabolic brain disease, infection, etc.

Comparison of US and MR

121 Neonates with brain US and MRI

	Number (M:F)	Median GA	Range	Weight
Preterm	105 (53:52)	28+3	$23^{+0} \sim 36^{+5}$	1172 ± 520 g
Term	16 (10:6)	39+1	$37^{+1} \sim 41^{+2}$	2496 ± 731 g

Retrospective review by 2 radiologists

- 1) Hemorrhage GMH/IVH ; Presence, grade, pattern Other sites
 - 2) Parenchymal lesions

- Kim JH. KJMRI 2009

Number of lateral ventricles with hemorrhage (Total N=242)

	US	MR	Both	Total
GMH	30	7	12	49 (20%)
IVH	4	46	17	67 (28%)

- Sensitivity of US detection for IVH seen on MRI; 26%

- Sensitivity of MR detection for GMH seen on US; 29%

Grade					
	Ι	II	III	IV	Total
US	24	8	13	0	45
MR	3	49	10	2	64

Hemorrhage other than GMH/IVH

	MR	US
Cerebral hemorrhage	8	4
Cerebellar hemorrhage	6	2
SDH	8	1
SAH	1	0

Cerebellar Hemorrhage

T1

GRE

Cerebellar Hemorrhage

- Traumatic birth, tight ventilator mask, supratentorial hemorrhage, germinal matrix hemorrhage
- 10-25% of VLBW preterm at postmortem exam
- 3% of preterm (<1500g) on US
- 8% of preterm (< GA 32W) on MRI</p>
- Neurologic signs due to co-occurring lesions? cognitive function?

- Counsell et al. Arch Dis Child Fetal Neonatal Ed 2003

Parenchymal Lesions

	MR	US
DEHSI	72	14
Non-cavitary lesion	7	3
Deep GM injury	2	3
Encephalomalacia (PVL)	7(5)	5(3)
Ventriculomegaly	16	11
(PV/pineal/V3/choroidal)	5/2/1/1	5/2/1/3
Callosal dysgenesys	1	1
Chiari malformation	1	1

Neurodevelopmental Outcomes in Preterm Infants with DEHSI Seen on MR images at Near Term-equivalent Age

Tae Yeon Jeon¹, Ji Hye Kim¹, So-Young Yoo¹, Hong Eo¹, Jeong-yi Kwon², Jee Hun Lee³, Mun Hyang Lee³, Yun-sil Jang³, Won Soon Park³

Department of Radiology and Center for Imaging Science¹, Department of Rehabilitation² and Department of Pediatrics³, Samsung Medical Center Seoul, Korea
126 High risk preterm infants

– GP < 32 W or birth weight < 1500g</p>

- Screening Brain MRI at mean CGA 36.6±1.9W
- <u>Neurodevelopmental assessment at CGA 18-24 M</u>
- M:F = 59:67 (GP23-36W, mean 27.5)
- Exclusion criteria
 - Metabolic disorders
 - Congenital malformations
 - Infections

MR Analysis

DEHSI

: Visually apparent high signal intensity of WM at centrum semiovale on T2WI/ADC map, low SI on T1WI/FLAIR

T2WI

ADC

MR Analysis

• Other WM lesions

• Gray matter lesions

- Punctate noncavitary lesions
 Cystic encephalomalacia
 Ventricular undulation
 Ventricular dilatation
 Myelination delay
- Gray matter SI change
 Gyral maturation
 Widening of the sulci
- GMH/IVH grades I~IV
- * Follow-up MRI (n=8, 6%) CGA 6~48 M (median, 10M)

Neurodevelopmental assessment

- At 18-24 M of age
- Bayley Scale of Infant Development-II
 - Mental developmental index (MDI) : Cognitive delay
 - Psychomotor developmental index (PDI) : Motor delay
- Cerebral palsy
- Neurosensory impairment
 - Vision impairment
 - Hearing defect

<u>DEHSI (+) : 95 (75%), DEHSI (-) : 31 (25%)</u>

Clinical factors	DEHSI (+)	DEHSI (-)	Р
GA (wk)*	27.8 ± 2.7	26.6 ± 2.9	0.011
Birth weight (g)*	1036 ± 270	922 ± 268	0.042
Corrected GA at MRI (wk)*	36.6 ± 2.1	36.7 ± 1.8	0.747
Small size for GA (%)	23 (24%)	6 (19%)	0.577
Male (%)	46 (48%)	13 (42%)	0.530
Singleton (%)	72 (76%)	23 (74%)	0.858

* Means ± SD

Outcome	DEHSI (+)	DEHSI (–)	Р
MDI score*	97 [105, 86]	97 [104, 85]	0.749
Severe cognitive delay	9	1	0.483
PDI score*	93 [103, 84]	97 [103, 85]	0.655
Severe motor delay	11	2	0.517
Cerebral palsy	7	2	1
Neurosensory impairment	11	9	0.054

*Medians [75th percentile, 25th percentile]

na an a	DEH	SI (+)	DEH		
Outcome	Other WM lesion		Other W	Р	
	(+)	(-)	(+)	(-)	
MDI score*	97 [106,76]	97.5 [105,90]	96 [97,81]	99.5 [105,90]	0.392
Severe cognitive delay	5	4	0	1	0.076
PDI score*	84 [101,61]	93 [104,86]	88 [101,73]	99.5 [106,86]	0.035
Severe motor delay	8	3	1	1	0.001
Cerebral palsy	7	0	2	0	<.0001
Neurosensory impairment	3	8	2	7	0.102

*Medians [75th percentile, 25th percentile]

	DEH	SI (+)	DEH	ISI (-)	
Outcome	Other WM lesion		Other W	Р	
	(+)	(-)	(+)	(-)	
MDI score*	97 [106,76]	97.5 [105,90]	96 [97,81]	99.5 [105,90]	0.392
Severe cognitive delay	5	4	0		0.076
PDI score*	84 [101,61]	93 [104,86]	88 [101,73]	99.5 [106,86]	0.035
Severe motor delay	8	3	1	1	0.001
Cerebral palsy	7	0	2	0	<.0001
Neurosensory impairment	3	8	2		0.102

*Modians [75th parcentile 25th parcentile]

	DEHS	(+)	DEH			
Outcome	Other WM lesion		Other W	Other WM lesion		
	(+)	(–)	(+)	(–)		
MDI score*	97 [106,76]	97.5 [105,90]	96 [97,81]	99.5 [105,90]	0.392	
Severe cognitive delay	5	4	0	1	0.076	
PDI score*	84 [101,61]	93 [104,86]	88 [101,73]	99.5 [106,86]	0.035	
Severe motor delay	8	3	1	1	0.001	
Cerebral palsy	7	0	2	0	<.0001	
Neurosensory impairment	3	8	2	7	0.102	

DEHSI only

Normal WM

Univariate Analysis for Associations between MR findings and Outcomes

	No.	Severe cognitive delay	Severe motor delay	Cerebral palsy	Neurosensory impairment
MR findings					
DEHSI	95	3.1 (0.4-142.9)	1.9 (0.4–18.5)	1.2 (0.2-12)	0.3 (0.1-1)
Other WM lesion	32	3.3 (0.7–15.4)	8.6 (2.2-41.7)	NA	1 (0.3–3.2)
Cystic encephalomalacia	7	5.4 (0.5-40)	8 (1-55.6)	13.3 (1.6–100)	2.2 (0.2-14.9)
Punctate lesion	9	3.8 (0.3–25.6)	9.3 (1.6-52.6)	32.3 (5–250)	0.7 (0.1–5.3)
GM lesion	44	3 (0.7–15.6)	3.4 (0.9–14.1)	4.1 (0.8–27)	2.1 (0.7–6.3)
GMH (Grade 3-4)	6	2.5 (0.5-11.6)	2.4 (0.6–9.4)	3.1 (0.6–15.4)	2.2 (0.7–6.8)

Odds ratio (95% CI)

Univariate Analysis for Associations between MR findings and Outcomes

	No.	Severe cognitive delay	Severe motor delay	Cerebral palsy	Neurosensory impairment
MR findings					
DEHSI	95	3.1 (0.4-142.9)	1.9 (0.4–18.5)	1.2 (0.2-12)	0.3 (0.1-1)
Other WM lesion	32	3.3 (0.7–15.4)	8.6 (2.2-41.7)	NA	1 (0.3–3.2)
Cystic encephalomalacia		5.4 (0.5-40)	8 (1-55.6)	13.3 (1.6–100)	2.2 (0.2-14.9)
Punctate lesion	9	3.8 (0.3–25.6)	9.3 (1.6-52.6)	32.3 (5–250)	0.7 (0.1-5.3)
GM lesion	44	3 (0.7–15.6)	3.4 (0.9-14.1)	4.1 (0.8–27)	2.1 (0.7–6.3)
GMH (Grade 3-4)	6	2.5 (0.5-11.6)	2.4 (0.6–9.4)	3.1 (0.6–15.4)	2.2 (0.7–6.8)

Odds ratio (95% CI)

Multivariate Analysis for Associations between MR findings and Outcomes

* Covariate factors : GA < 28W, weight < 1000g, low Apgar score, male, multiple birth

	No.	Severe cognitive delay	Severe motor delay	Cerebral palsy	Neurosensory impairment
Adjusted MR findings*					
DEHSI	95	5.9 (0.6–58.8)	3.2 (0.5-21.3)	0.6 (0-7.5)	0.3 (0.1-1.1)
Other WM lesion	32	0.7 (0.1-6.5)	3.9 (0.6–25)	NA	0.5 (0.1-2.5)
Cystic encephalomalacia		6.2 (0.4–100)	3.8 (0.4-41.7)	19.6 (1.3–333.3)	4.4 (0.4–45.5)
Punctate lesion	9	3.4 (0.2–50)	3.3 (0.4–29.4)	90.9 (6.4- 1000)	0.8 (0.1-11.5)
GM lesion	44	2.6 (0.5-13)	2.5 (0.6-10.5)	11.6 (0.8–166.7)	2.1 (0.7–6.4)
GMH (Grade 3-4)	6	1.7 (0.3–9.9)	1.0 (0.2–4.9)	1.5 (0.2–13.7)	1.5 (0.4–5.5)

Odds ratio (95% CI)

DEHSI in Preterm Infants

- Most common MR findings at near term (75%, 95/126 infants)
- Did not associated with more adverse outcomes compared with infants without DEHSI
- Significant predictors for outcomes;
 - Cystic encephalomalacia
 - Noncavitary punctate WM lesions

-Jeon TY, Kim JH, Yoo SY et al. Radiology 2012

Late MRI

Evolution of DEHSI

T2

2Y later

T2 F

FLAIR, 6m later

T2

FLAIR

FLAIR, 1Y later

Serial MR Imaging and Clinical Outcome in High Risk Premature Infants at Termequivalent and 2 Years of Age.

Punctate lesion→ PVL

Punctate lesion→ PVL

cGA 37 wk

IVH G2 \rightarrow PVL

cGA 39 wk

cGA 24mo

Normal \rightarrow PVL

cGA 35 wk

cGA 24mo

Evolution of PVL on MRI

Day 21

2 Years of age

DTI in Assessment of PVL

- Fan GG et al. Clinical Radial 2006

DTI in Assessment of PVL

- Decreased FA in damaged area
 -Impaired myelination
 -Axonal damage
- Attenuated size of CST, PTR, AF, SLF, CR
 - -Abnormal tone/movement
 - -Aphasia
 - -Interconnection of somatomotor/sensory
 - -Visual disorder

Spastic motor dysfunction in PVL

Normal Control

PVL

Corticospinal tract (CST) injury vs. Impaired sensory inhibition by thalamus

- Lee JD et al J Nucl Med 1998, -Hoon AH et al. Neurology 2002, Lee SK et al. Radiographics 2005

Brain imaging for perinatal brain injury

Selective injury according to brain maturity & severity of hypoperfusion

- Evolving white matter injury in preterm infants
- Diverse spectrum of intracranial hemorrhage
- Complementary role of US and MRI
- Prediction of patient outcome