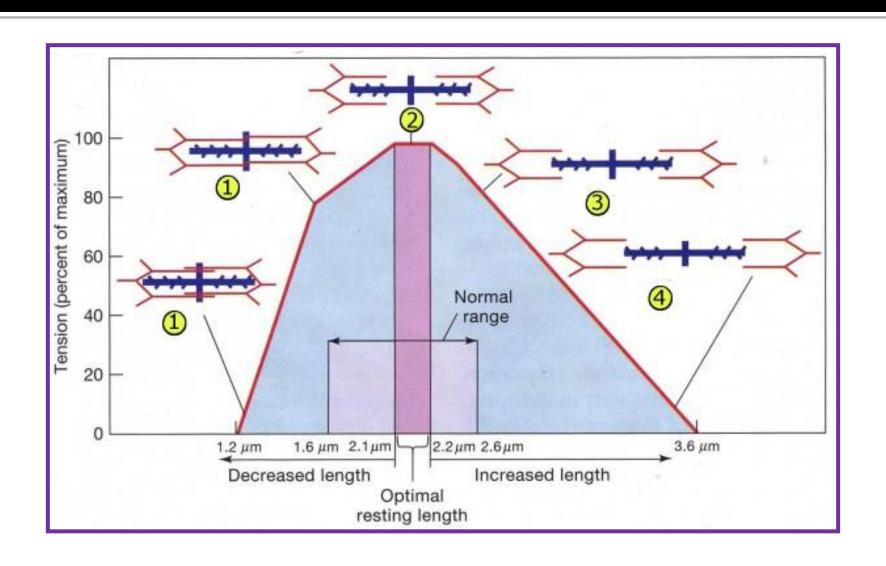
Evidence based techniques for pediatric rehabilitation

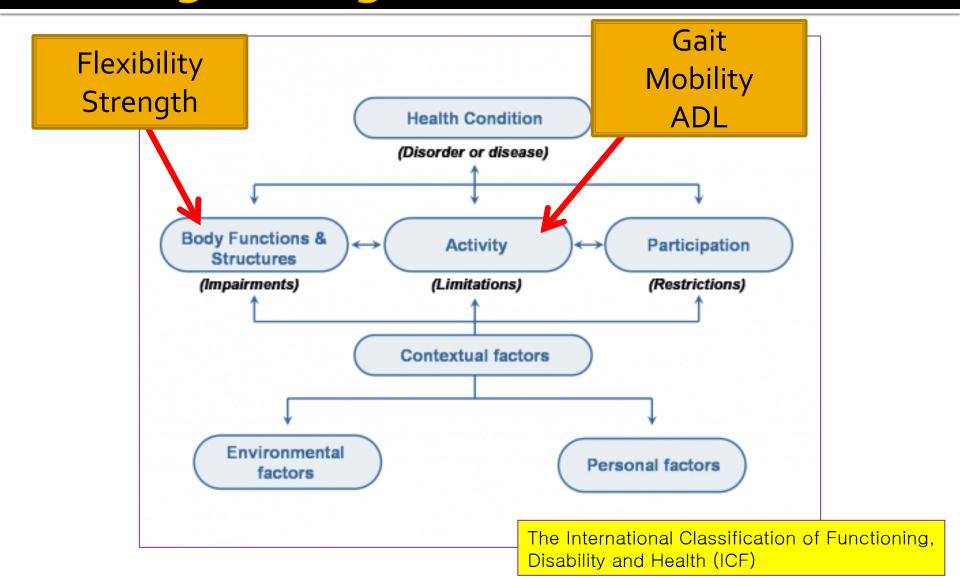
Stretching and Strengthening exercises

가톨릭의대 재활의학교실 장대현

Definition


Stretching

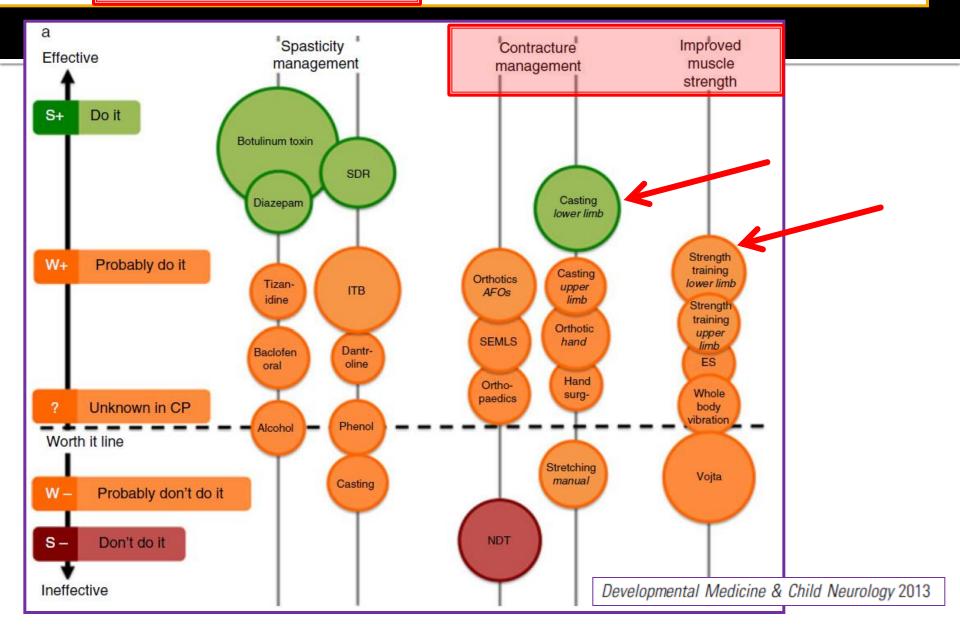
- Flexibility exercise
- Lengthen pathologically shortened soft tissue


Strengthening

- Strength is the maximal force a muscle can generate.
- Power is the product of strength (speed of movement).
- Muscular endurance is the capacity to sustain repeated muscle actions.

Length-tension relationship of the muscle

Evidences of stretching and strengthening


Evidences of stretching and strengthening

Pediatric rehabilitation

- Cerebral palsy
- Neuromuscular disease (Myopathy, SMA, CMT etc.)
- Genetic disease (Down syn, PWS etc.)

Cerebral palsy

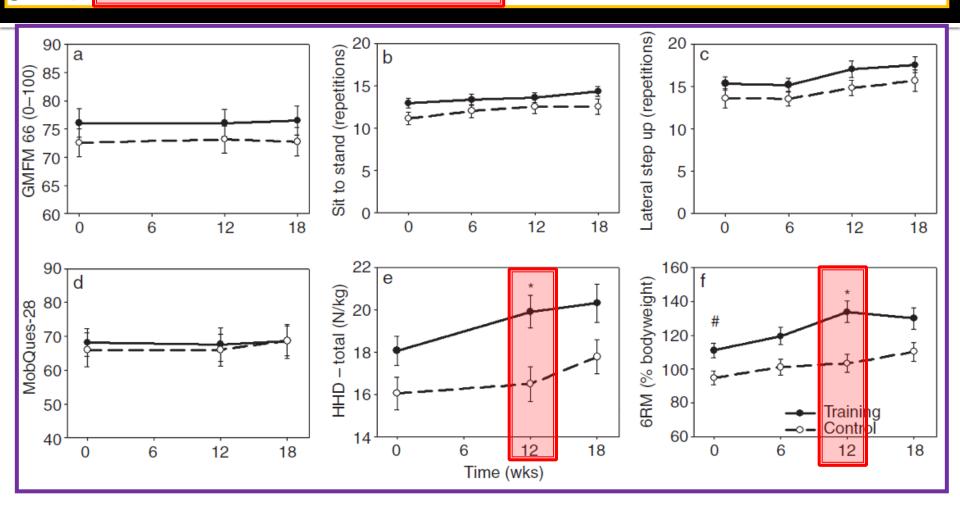
A systematic review of interventions for children with cerebral palsy: state of the evidence

Strengthening exercise in CP

- Variety of methods
 - Progressive resistance exercise
 - Isometric exercise
 - Isokinetic exercise
 - Functional exercise
 - Weight-bearing exercise

- Training intensity?
- Training period?

Muscle strength training to improve gait function in children with cerebral


		s Motor Function Megait parameters ($n=1$		ige)	All $n=32$
	Before training median (range)	0	Wilcoxon signed rank p	61.5) 1.3)	<0.001 <0.001
GMFM	84.8 (66.7–100)	90 (67.4–100)	0.003	9.3)	< 0.001
Velocity, m/sec	1.2 (1-1.5)	1.25 (0.9–1.6)	0.859	05.5)	0.001
Stride, m Cadence,	1.1 (0.9–1.4) 132 (108–151)	1.15 (0.9–1.5) 130.5 (104–149)	0.059 0.016	8.6)	0.955
steps/min				07.9)	0.001
Ankle dorsifle	,	0.9 (0.6–20.5)	11.5 (0-25	5.7)	0.057
Ankle plantar		6 (2-68.8) 0.4 (13-65.3)	33 (14.1–7	73.8)	0.132

Therapeutic effects of strengthening exercise on gait function of cerebral palsy

Disability and Rehabilitation, 2008; 30(19): 1439-1444

	Pre trai	ning	Post training			
	Experimental Control Expe		Experimental	Control		
Lateral step up	6.4 ± 4.1	6.6 ± 4.7	9.3 ± 4.8	8.5 ± 4.7		
Squat to stand	11.6 ± 6	13.8 ± 5.6	13.2 ± 5.4	$14.1 \pm 5.8*$		
GMFMT	86.5 ± 13.3	85.2 ± 13.4	86.9 ± 13.4	85.4 + 13.5		
GMFMD	73.5 ± 25.7	74.5 ± 23.7	73.7 ± 26.6	$74.6 \pm 23.7^{\star}$		
GMFME	61.6 ± 34.1 61.4 ± 33.9		62.7 ± 34.1	61.4 ± 33.9*		
Speed (cm/s)	54.7 ± 30.7	69.8 ± 43.0	74.6 ± 38.7	$68.2 \pm 42.9 \star$		
Stride length (cm)	62.5 ± 21.8	70.0 ± 32.1	80.0 ± 26.4	68.3 ± 24.6 *		
Cadence	106.8 ± 37.1	107.9 ± 48.4	109.7 ± 26	101.1 ± 47.4		
Single support (%)	35.8 ± 10.0	38.2 ± 9.2	39.3 ± 11.0	36.5 ± 12.1		
Double support (%)	22.0 ± 11.9	23.7 ± 17.6	15.8 ± 12.9	$27.0 \pm 22.7^{\star}$		

Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial

Increases in muscle volume after plantarflexor strength training in children with spastic cerebral palsy

	Baseline	Week 5	Week 10	Follow-ι
Functional Mobility Scale	17 (4–18)	17 (8–18)	17 (8–18)	17 (5–18
Gillette Functional Assessment Questionnaire	9 (2-10)	9 (2-10)	9 (7–10)	9 (8–10)
Timed Up and Go, s	5.6 (0.7)	5.5 (0.9)	5.63 (0.7)	5.37 (0.8
Heel raises, n	1 (0-30)	4.5 (0-50) ^a	10 (0-50) ^b	9.5 (0-6
Table III: Mean (SD) gait parameters at different points in	the strengthening progra	amme		
Table III: Mean (SD) gait parameters at different points in	n the strengthening progra Baseline	amme Week 5	Week 10	Follow-u
Table III: Mean (SD) gait parameters at different points in Knee flexion single support, °			Week 10 13.4 (6.3)	Follow-u 14.5 (6.2)
	Baseline	Week 5		
Knee flexion single support, °	Baseline 14.3 (6.1)	Week 5 16.1 (4.8)	13.4 (6.3)	14.5 (6.2
Knee flexion single support, ° Maximum ankle dorsiflexion, second half stance °	Baseline 14.3 (6.1) 11.7 (10.7)	Week 5 16.1 (4.8) 12.6 (10.2)	13.4 (6.3) 12.0 (9.2)	14.5 (6.2 10.7 (11.
Knee flexion single support, ° Maximum ankle dorsiflexion, second half stance ° Cadence, steps/min	Baseline 14.3 (6.1) 11.7 (10.7) 117.9 (20.9)	Week 5 16.1 (4.8) 12.6 (10.2) 120.1 (17.1)	13.4 (6.3) 12.0 (9.2) 119.6 (14.8)	14.5 (6.2 10.7 (11 121.8 (1

Developmental Medicine & Child Neurology 2009, 51: 429-435

Pediatric endurance and limb strengthening for children with cerebral palsy (PEDALS) – a randomized controlled trial protocol

Neurorehabilitation and Neural Repair 27(9) 816–827

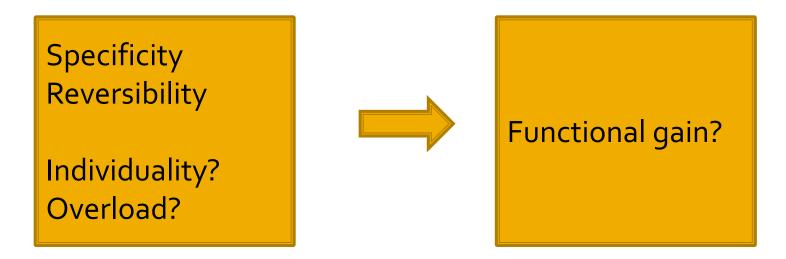
© The Author(s) 2013

for a stationary cycling intervention

- Spastic dip
- 7-18 years
- 60명
- 12 weeks(3 times/wk)

Table 3.Gait Speed and Gross Motor Function Outcomes^a

Measure	Cycling Group	Control Group	P ^b
600-Yard Walk-Run Test speed (m/min)	n=27	n=28	
Baseline	85.0 (69.7 to 100.4)	81.6 (65.9 to 97.4)	
Postintervention	90.6 (75.4 to 105.7)	84.1 (67.6 to 100.7)	
Change ^c	5.6 (1.6 to 9.5)	2.5 (-1.1 to 6.0)	.24
Р	.008 ^d	.16	
30sWT speed (m/min)	n=29	n=29	
Baseline	66.9 (58.6 to 75.1)	58.7 (51.0 to 66.5)	
Postintervention	68.0 (60.4 to 75.7)	62.1 (54.4 to 69.8)	
Change	1.2 (-3.9 to 6.2)	3.4 (-1.7 to 8.4)	.52
Р	.64	.18	
GMFM-66	n=29	n=29	
Baseline	69.6 (65.4 to 73.8)	68.8 (64.5 to 73.0)	
Postintervention	70.8 (66.6 to 74.9)	69.3 (65.4 to 73.3)	
Change	1.2 (0.5 to 1.8)	0.5 (-0.2 to 1.3)	.23
Р	.002 ^d	.12	


Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy

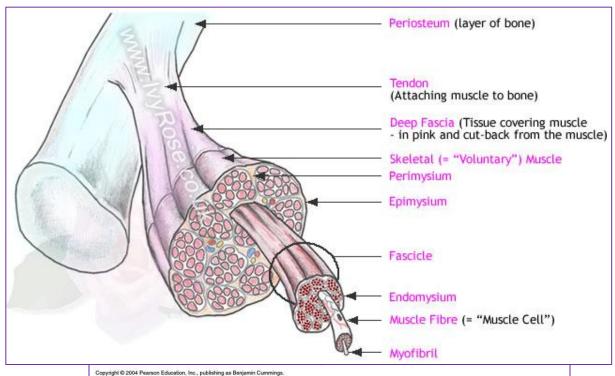
Outcomes	Sub-outcomes	k	−95%CI	ES
Activity	GMFM	13	0.260	0.565
	Other gross motor measures	5	0.286	0.787
	Sit to stand	3	0.535	1.175
	Stair climbing	5	0.220	0.552
	Others	4	0.224	1.858
	Subtotal	30	0.474	0.668
Gait	Endurance	1	-0.994	0.139
	Kinematic	23	1.209	1.671
	Kinetic	12	0.586	0.916
	Spatial parameter	11	0.452	0.900
	Speed	12	0.166	0.475
	Subtotal	59	0.675	0.858
Strength	Ankle plantar flexor	3	-0.017	0.349
	Hip abductor	3	1.408	1.850
	Hip adductor	1	-0.404	0.568
	Hip extensor	3	-0.036	1.538
	Hip flexor	3	0.157	0.772
	Knee extensor	16	0.983	1.463
	Knee flexor	5	1.148	1.150

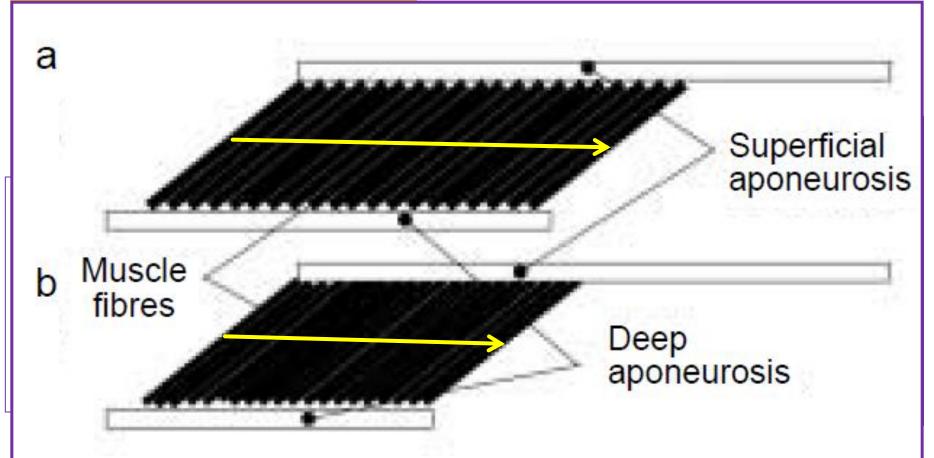
Research in Developmental Disabilities 35 (2014) 239-249

Strengthening exercise in CP

- Various strengthening exercise programs
 - => evident to gain of strength

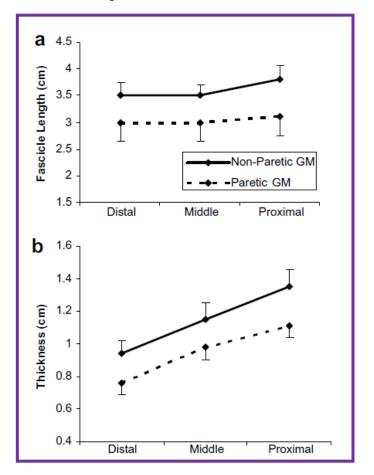
Stretching exercise in CP

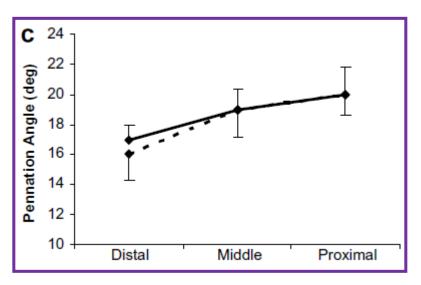

- Active stretching
- Passive stretching
- Therapeutic stretching (PNF etc.)



Mechanisms?

- Mechanisms of contracture in CP?
 - Muscle fascicle
 - Tendon
 - Fascia




Architecture of the medial gastrocnemius in children with spastic diplegia

Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy

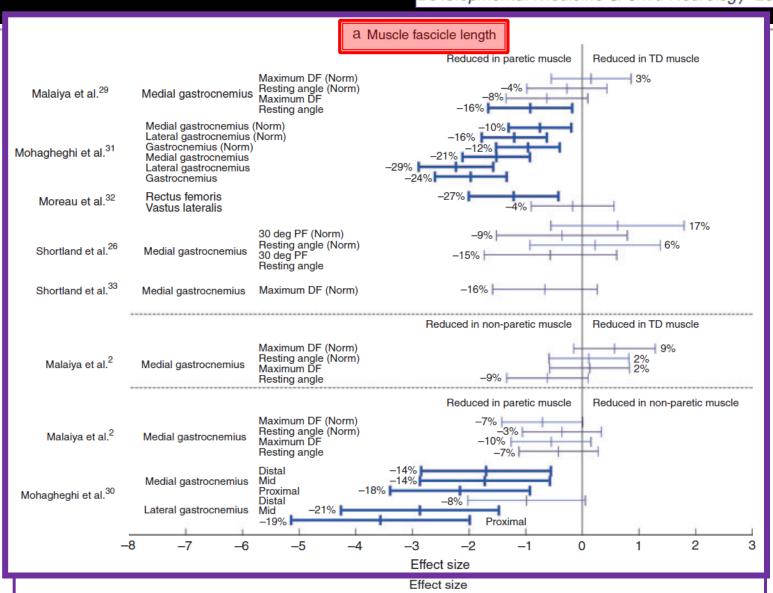
CP spastic hemi (n=8)

Clinical Biomechanics 22 (2007) 718-724

Does acute passive stretching increase muscle length in children with cerebral palsy?

Clinical Biomechanics 28 (2013) 1061–1067

Stretching with Children with Cerebral Palsy: What Do We Know and Where Are We Going?


Pediatr Phys Ther 2008 20(2) 173-8

'To stretch or not to stretch in children with cerebral palsy'

Developmental Medicine & Child Neurology 2007, 49: 797–800

Gross muscle morphology and structure in spastic cerebral palsy: a systematic review

Developmental Medicine & Child Neurology 2010, 52: 794–804

Clinical research?

The effectiveness of passive stretching in children with cerebral palsy

Table II: Summary of	study characteristics				
Study	Research design	Nr of parts	Nr of participants		
		Treatment	Control		
		group	group		
Fragala et al. (2003) ²⁰	Multiple single-subject ABAB design	7	7 a		
Lespargot et al. (1994) ¹⁹	Before-and-after design	10	20		
McPherson et al. $(1984)^{21}$	Multiple single-subject design	4	4^a		
Miedaner and Renander (1987) ¹⁶	Multiple single-subject with randomized cross-over design	13	13 ^a		
O'Dwyer et al. (1994) ¹⁴	Randomized controlled trial	8	7		
Richards et al. (1991) ¹⁷	Randomized controlled trial	8	11		
Tremblay et al. (1990) ¹⁸	Randomized controlled trial	11	10		

Developmental Medicine & Child Neurology 2006, 48: 855–862

A systematic review of the effects of on equinus with cerebr evidence re **AACPDM**

Bottos et al. 2003²¹

II-W (3/7)

Small RCT

Small RCT

19 origi

Serial casting in Tricep Gross motor fu cerebral palsy: panacea, placebo, or peril? Right

12mo

ns

ns

ns

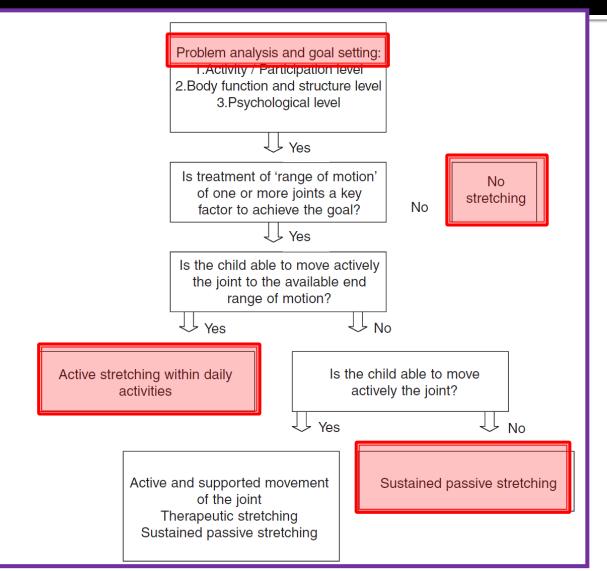
ns ns

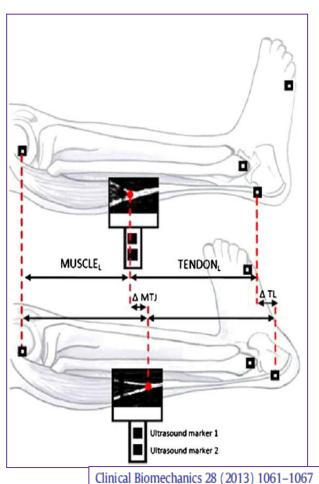
ns ns

ns

ns

nsns


ns ns


ns

Stride length. Developmental Medicine & Child Neurology 2007, 49: 725–725

	0			,,,	
				BTX-A	
	Cadence	Gait analysis	ns	ns	1
	Speed of progression	Gait analysis	ns	0.04 C+	1
				BTX-A	
Sagittal ar	nkle angle at initial contact	Gait analysis	ns	ns	1
	Ankle df during stance	Gait analysis	ns	ns	1
Aslaman et al. (2005)20c	Cait valagity	Vices 2D eait analysis			
Ackman et al. (2005) ^{20c}	Gait velocity	Vicon 3D gait analysis			1
II-S (6/7)	Stride length	Vicon 3D gait analysis			1
Small RCT	Ankle df at initial contact	Vicon 3D gait analysis			1
	Peak df in stance	Vicon 3D gait analysis			1
	Peak df in swing	Vicon 3D gait analysis			1
	Triceps surae spasticity	MAS			1
		Tardieu			1
	Passive ankle df	Goniometry			1
	Active ankle df	Goniometry			1
	Ankle df strength	Manual muscle test			1
	Ankle pf strength	Manual muscle test			1
	Ankle power generation	Unilateral heel rises			1
Casting then BTX-A vs BT	X.A then casting study				
		Cait analysis			
Desloovere et al. (2001) ²³	Walking velocity	Gait analysis			1
II-M (5/7)					

Experienced based

Stretching exercise in CP

- Mechanism?
- Clinical research (RCT)?
- Experience/basic science/natural history based approach

Neuromuscular disease (Myopathy, SMA, CMT etc.)

Duchenne Muscular Dystrophy

Response to Exercise

Untrained Individual

Well documented in literature

Exercise prescription: intensity, duration, and frequency

Well characterized training responses

Functional adaptations: increased muscle strength and endurance Untrained DMD Individual

Poorly documented in literature

Exercise prescription?

Training response and/or worsen dystrophic process?

Functional adaptations?

	Table 1. Studies that suggest exercise is contraindicate	ited in DMD. ³
Study reference	Study title	that po
Karpati et al. (1986) ¹⁸²	Small-caliber skeletal muscle fibers do not suffer deleterious consequences of dystrophic gene expression	
Weller et al. (1990) ¹⁸³	Dystrophin-deficient <i>mdx</i> muscle fibers are preferentially vulnerable to necrosis induced by experimental lengthening contractions	
Mizuno (1992) ¹⁸⁴	Prevention of myonecrosis in <i>mdx</i> mice: effect of immobilization by the local tetanus method	
Clarke et al. (1993) ⁷³	Loss of cytoplasmic basic fibroblast growth factor from physiologically wounded myofibers	
Vilquin et al. (1998) ¹⁸⁵	Evidence of <i>mdx</i> mouse skeletal muscle fragility in vivo by eccentric running exercise	
Mokhtarian et al. (1999) ¹⁸⁶	Hindlimb immobilization applied to 21-day-old <i>mdx</i> mice	
Bansal et al. (2003) ¹⁸⁷	Defective membrane repair in dysferlin-deficient muscular dystrophy	

ACSM, 2007

Spinal muscular atrophy

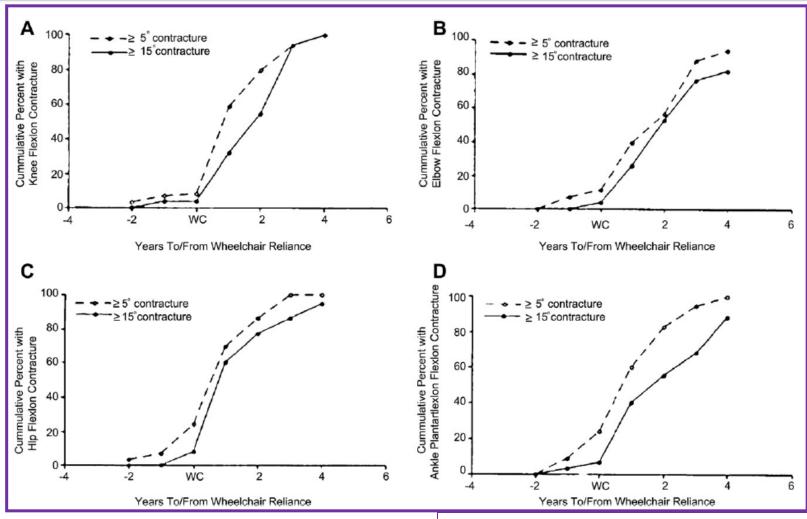
What kind of exercise is best?

Some physical therapy experts have raised questions about whether it's wise to put too much demand on a gradually decreasing number of motor neurons which have to do the work that would normally be done by many more such cells Research is needed to determine whether this theoretical issue should actually be considered in designing an exercise plan. Some experts believe it's impossible to overdo it, while others believe exercising to exhaustion can burn out remaining motor neurons before their time. It seems sensible to exercise with discretion and stop before reaching the point of exhaustion.

MDA USA

SMA

MRC % F


Table 3: Descriptive Statistics of ROM Limitations for SMA Type II (n=27)

	· · · · · · · · · · · · · · · · · · ·		, ,					
		ROM Limitations						
Measured Motions	Percentage of Participants	Max Range Loss (deg)	Contracture Index	Age Distribution				
Knee extension	89 (24)	48±24	4.27	1.6, 21.5 (12±6)				
Ankle dorsiflexion	52 (14)	25±20	1.30	1.6, 21.5 (12±7)				
Hip extension	48 (13)	40±20	2.16	4.0, 21.5 (13±6)				
Shoulder flexion	30 (8)	31±22	0.93	7.3, 21.5 (17±8)				
Shoulder abduction	30 (8)	51±42	1.53	7.3, 21.5 (17±6)				
Elbow extension	30 (8)	33±27	0.99	7.4, 21.5 (15±5)				
Hip abduction	30 (8)	17±8	0.51	7.3, 22.2 (16±6)				
Forearm supination	26 (7)	70±41	1.82	4.3, 22.2 (15±7)				
Hip flexion	15 (4)	18±6	0.27	7.3, 21.5 (16±7)				
Ankle plantarflexion	15 (4)	26±18	0.39	1.9, 21.5 (13±9)				

Neuromuscular Disorders 22 (2012) 1069–1074

Arch Phys Med Rehabil Vol 85, October 2004

DMD

Phys Med Rehabil Clin N Am 23 (2012) 675-687

Rehabilitation interventions for foot drop in neuromuscular disease (Review)

The Cochrane Library 2009, Issue 3

Analysis 5.2. Comparison 5 Night splinting versus control in Charcot-Marie-Tooth disease, Outcome 2 Change in eversion range of motion (deg).

Review: Rehabilitation interventions for foot drop in neuromuscular disease

Comparison: 5 Night splinting versus control in Charcot-Marie-Tooth disease

Outcome: 2 Change in eversion range of motion (deg)

Study or subgroup	Splinting		Control		Dif	Mean ference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	IV,Fix	ed,95% Cl		IV,Fixed,95% CI
Refshauge 2006	13	I (3)	13	I (2)			100.0 %	0.0 [-1.96, 1.96]
Total (95% CI)	13		13				100.0 %	0.0 [-1.96, 1.96]
Heterogeneity: not app	olicable							
Test for overall effect: 2	Z = 0.0 (P = 1.0)	0)						
Test for subgroup diffe	rences: Not app	olicable						
							1	
					-4 -2	0 2	4	
					Favours control	Favours s	splinting	

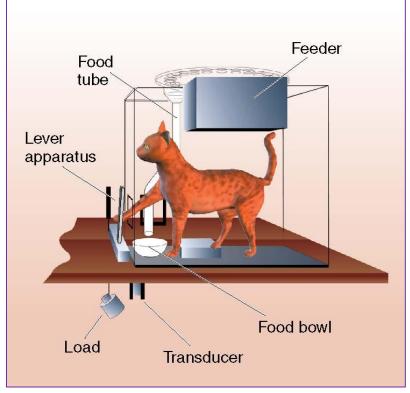
EXERCISE AND DUCHENNE MUSCULAR DYSTROPHY: TOWARD EVIDENCE-BASED EXERCISE PRESCRIPTION

Muscle Nerve 43: 464-478, 2011

CONCLUSIONS

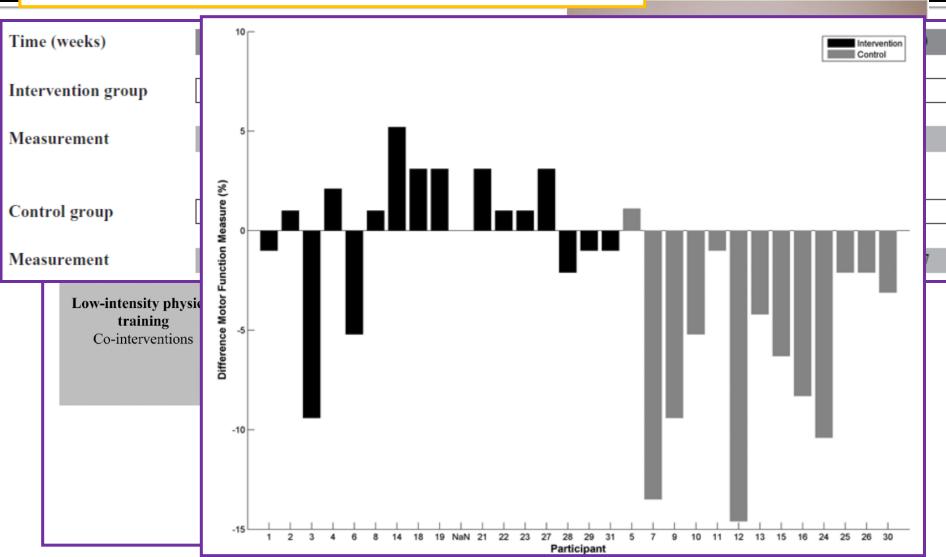
A sense of urgency permeates research into the pathophysiological mechanisms underlying DMD. Improved understanding of the pathophysiology is critical, and the incorporation of exercise into experimental designs could help to mechanistically define the pathophysiology. At present, informed exercise prescription for DMD patients is challenging due to lack of inquiry and lack of evidence.

EXERCISE AND DUCHENNE MUSCULAR DYSTROPHY: WHERE WE HAVE BEEN AND WHERE WE NEED TO GO


MUSCLE & NERVE May 2012

KEY UNANSWERED QUESTIONS

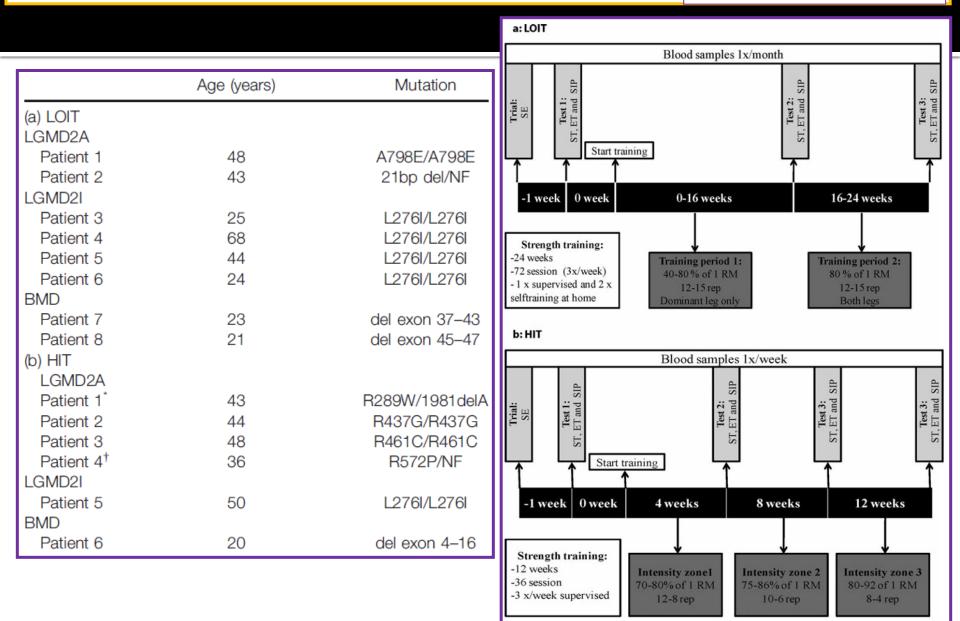
- 1. What is the appropriate amount and type of physical activity or exercise?
- 2. How long and how often should children be physically active? (What type, intensity, and duration of exercise and/or activity?)
- 3. What are the contributions of fatigue and how should it be best defined and measured?
- 4. What is the role of muscle stretching? For example, will flexibility exercises assist/maintain flexibility and therefore increase ease of movement and decrease the resistance against which weak muscles contract? Would maintenance of flexibility decrease intramuscular fibrosis? Will flexibility prevent contractures and improve biomechanics for movement?
- 5. With appropriate exercise, can the progression of muscle atrophy and weakness be mitigated?


Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse J Appl Physiol 115: 660-666, 2013.

A 8 Sedentary Body wt, g 19.5 ± 0.1 Initial 32.4 ± 0.12 Final EDL, mg and mg/g 15.3 ± 0.1 $78.6 \pm 2.$ Tibialis anterior, mg and mg/g Quadriceps, mg and mg/g 293 ± 4 Gastrocnemius, mg and mg/g 160 ± 5 Sedentary Runner 16.2 ± 0 Soleus, mg and mg/g diaphragm specific tension

						•
	Sedentary (C	20 7			
Heart mass, mg Relative heart mass, mg/g body wt	147 ± 4.5 ±		15 -		Г	
Heart rate, beats/min Interventricular septum (diastole), mm	349 ± 0.96 ±	l/cm ²	10 -			
LV internal diameter (diastole), mm LV free wall (diastole), mm	3.3 ± 1.0 ±	2	5 -			
LV internal diameter (systole), mm Fractional shortening, %	2.3 ± 33 ±		<u>, </u>			
End-diastolic volume, ml	0.10 ±		_	Sedentary S	oleus	Runner

Assisted Bicycle Training Delays Functional Deterioration in Boys With Duchenne Muscular Dystrophy: The Randomized Controlled Trial "No Use Is Disuse"


Neurorehabilitation and Neural Repair 27(9) 816–827 © The Author(s) 2013

RESISTANCE TRAINING IN PATIENTS WITH LIMB-GIRDLE AND

BECKER MUSCULAR DYSTROPHIES

Muscle Nerve 47: 163–169, 2013

Efficacy of Muscle Exercise in Patients with Muscular Dystrophy: A Systematic Review Showing a Missed Opportunity to Improve Outcomes

Strength training and aerobic exercise training for muscle disease (Review)

The Cochrane Library 2013, Issue 7

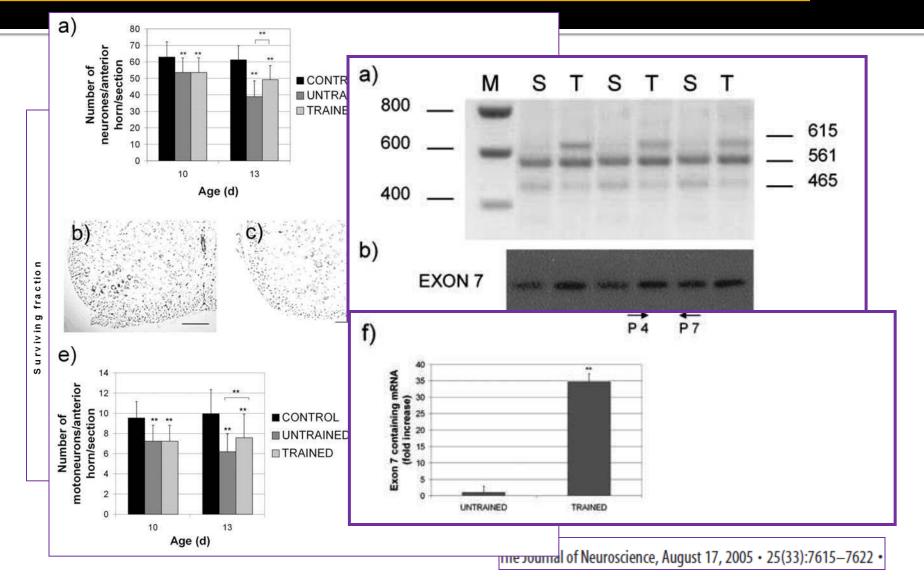
```
1.1.3 MyD and FSHD
Lindeman 1995
                         5.3 12.9
                                              1.4 8.2
                                                                60.2%
                                                                           3.90 [-4.11, 11.91]
Tollback 1999
                         8.4 8.62
                                        5
                                             3.8 7.19
                                                                39.8%
                                                                           4.60 [-5.24, 14.44]
Subtotal (95% CI)
                                       19
                                                           19 100.0%
                                                                          4.18 [-2.03, 10.39]
Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.01, df = 1 (P = 0.91); I^2 = 0\%
Test for overall effect: Z = 1.32 (P = 0.19)
                                                                                              -10
                                                                                                                               10
                                                                                                       Training Control
```

Recommendations for exercises in DMD/other myopathy Lancet Neurol 2010; 9: 177-89

- Submaximum, aerobic exercise/activity is recommended
- Avoid an overexertion and overwork weakness
- High resistance strength training & eccentric exercise are inappropriate

Consensus Statement for Standard of Care in Spinal Muscular Atrophy

Consensus on Pulmonary Care


Consensus on Gastrointestinal and Nutritional Care

Consensus on Orthopedic Care and Rehabilitation

Interventions

No studies directly address physical therapy and occupational therapy as general therapies, although a case report

Regular Exercise Prolongs Survival in a Type 2 Spinal Muscular Atrophy Model Mouse

Estimated Enrollment: 14

Study Start Date: November 2010 Estimated Study Completion Date: August 2014

Primary Completion Date: February 2013 (Final data collection date for primary outcome measure)

Clinical.

A service of the U

Find Studies

Home > Find Stu

Clinical Trial

This study is

Sponsor:

Columbia Un

Information pro Darryl C. De Vi

Full Text V

Muscle strengthening program using weights and resistance bands in combination with a mome based cycle ergometry program. The home-based exercise program will be performed. This home-base cycling and 30 n will be something to 5 times weekly. No Intervention: Typical Activity Subjects in this group will be asked to maintain their typical daily activity. Those assigned to this arm will be given the opportunity to join the intervention arm seven months after their	Arms	
Subjects in this group will be asked to maintain their typical daily activity. Those assigned to his arm will be given the opportunity to join the intervention arm seven months after their	Experimental: Exercise Muscle strengthening program using weights and resistance bands in combination with a nome based cycle ergometry program. The home-based exercise program will be performed up to 5 times weekly.	Muscle strengthe This home-base
	No Intervention: Typical Activity Subjects in this group will be asked to maintain their typical daily activity. Those assigned to his arm will be given the opportunity to join the intervention arm seven months after their	

Eligibility

Ages Eligible for Study: 8 Years to 50 Years

Genders Eligible for Study: Both Accepts Healthy Volunteers: Yes

Criteria

Inclusion Criteria:

- 1. Weakness and hypotonia consistent with the clinical diagnosis of SMA type 3, i.e. having achieved the abilit
- 2. Laboratory documentation of homozygous absence of SMN1 exon 7
- 3. ability to walk at least 25 meters without assistance
- 4. Aged 8 to 50 years at the time of enrollment
- 5. Ability to tread the stationary cycle ergometer
- Written informed consent of patient (if ≥ 18 years of age) or parents/guardian (if < 18 years of age), and ass

Exclusion Criteria:

1 Inability to walk independently at least 25 meters

In summary (neuromuscular diseases)

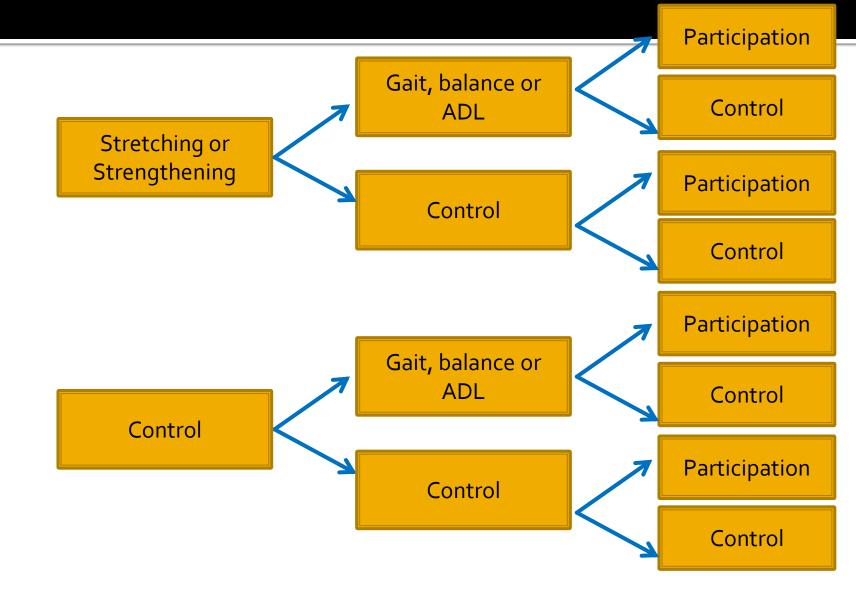
- The evidence of stretching: lack
- Consensus and recommendations based by animal studies/basic science/experience
 - Submaximal strengthening

Genetic disease (Down syn.)

Benefits of physical exercise intervention on fitness of individuals with **Down syndrome: a systematic review** of randomized-controlled trials

Table 2 Details of	the participants					
Studies	Groups	Mean age (years)	Male: female			
Abdel Rahman and Shaheen (2010)	Intervention (n=13)	4.2 (0.4)	5:8			
Carmeli <i>et al.</i> (2002)	Control $(n=13)$ Intervention $(n=16)$	3.9 (1.2) 63.5 (2.0)	6:7 10:6			
	Control (n=10)	63.3 (4.8)	6:4			
González-Agüero et al. (2011)	Intervention (n=12)	13.7 (2.6)	7:5			
Gupta et al. (2011)	Control $(n=13)$ Intervention $(n=12)$	15.4 (2.5) 13.0 (ND)	8:5 8:4			
	Control $(n=11)$	13.5 (ND)	6:5			
Lin and Wuang (2012)	Intervention (n=46)	15.6 (3.6)	25:21			
	Control (n=46)	14.9 (3.9)	24:22			
Rimmer <i>et al.</i> (2004)	Intervention (n=30)	38.6 (6.2)	16:14			
	Control (n=22)	40.6 (6.5)	13:9			
Shields and Taylor (2010)	Intervention (n=11)	15.9 (1.5)	8:3			
	Control $(n=12)$	15.3 (1.7)	9:3			
Shields et al. (2008)	Intervention $(n=9)$ Control $(n=11)$	25.8 (5.4) 27.6 (9.5)	7:2 6:5			
Ulrich et al. (2011)	Intervention $(n=19)$ Control $(n=27)$	12.0 (1.9) 12.4 (2.2)	9:10 11:16			
Varela et al. (2001)	Intervention $(n=8)$ Control $(n=8)$	22.0 (3.8) 20.8 (2.3)	8:0 8:0			

Strength and agility training in adolescents with Down syndrome: A randomized controlled trial*

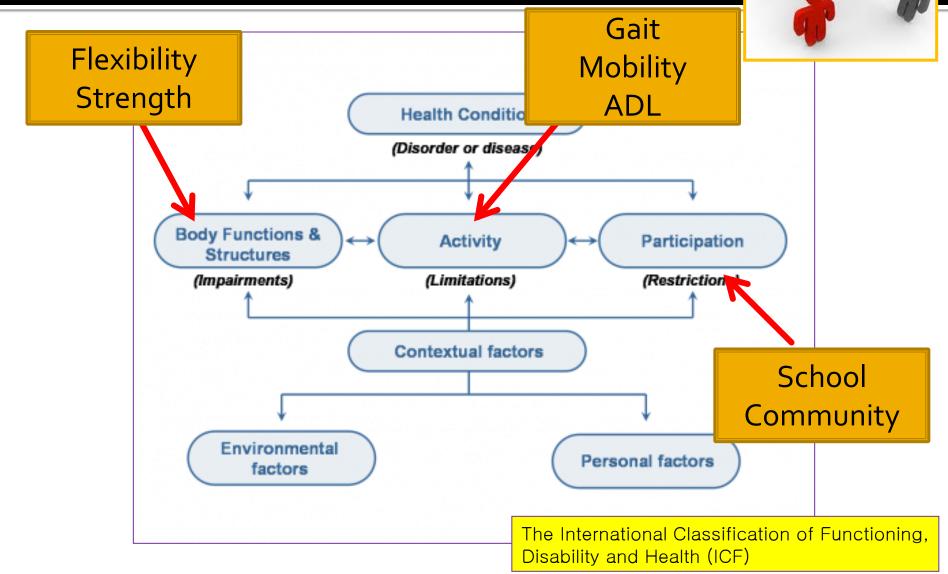

Research in Developmental Disabilities 33 (2012) 2236–2244

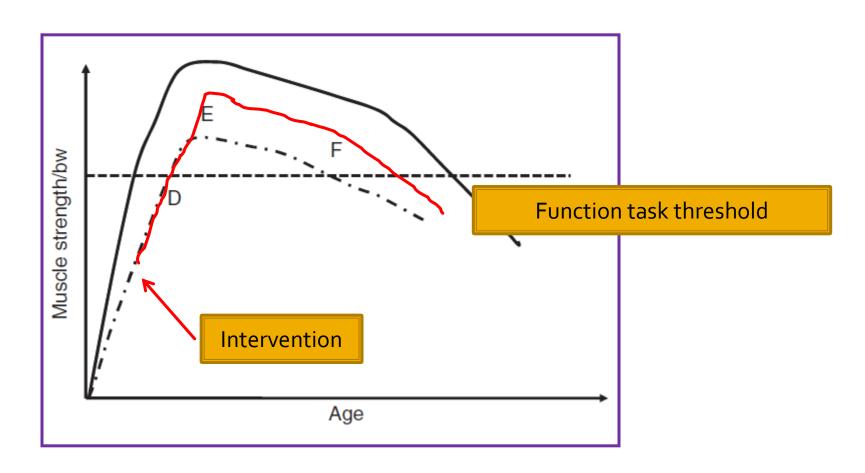
Muscle strength of lower extremities measures by experimental and pre-posttest condition.									
	Pretest				Posttest				
	Exercise grou	ıp	Control group		Exercise group		Control group		p^*
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	
Hip flexors	16.39	1.71	16.28	2.00	17.33	2.15	16.20	1.97	0.010
Hip extensors	13.43	1.97	12.89	2.15	14.07	1.24	13.02	2.04	0.018
Hip abductors	12.89	2.15	13.24	1.99	14.46	1.73	13.37	1.82	0.004
Knee flexors	14.67	1.56	14.85	1.58	16.27	1.81	15.02	1.45	0.029
Knee extensors	14.33	1.65	14.46	1.39	15.75	1.94	14.65	1.23	0.031
Ankle plantarflexor	12.87	1.77	13.00	1.74	14.04	1.28	13.30	1.46	0.011
Note: muscle strength is me	easure in pound	s (lb). p* level	indicates sigr	nificance betv	veen groups or	n post-interver	ntion scores.		
Agility									
Shuttle run	5.0		5.0	1.3	7.0	1.8	4.0	1.5	0.01
Stepping sideways	3.0		3.0	1.1	3.0	1.1	3.0	1.3	0.02
One-legged stationary jur	mp 4.0	1.3	4.0	1.0	6.0	1.5	4.0	1.6	0.03
One-legged side hop	4.0		4.0	0.9	5.0	1.5	3.0	1.2	0.01
Two-legged side hop	3.0	0.8	3.0	0.8	4.0	1.0	3.0	1.2	0.02
Total agility score	11.0	6.3	11.0	5.9	16.0	6.6	10.0	6.8	0.01
Body strength									
Standing long jump	5.0	1.2	5.0	1.3	7.0	1.8	4.0	1.5	0.01
Push-ups	3.0	1.0	3.0	1.1	3.0	1.1	3.0	1.3	0.04
Sit-ups	4.0	1.3	4.0	1.0	6.0	1.5	4.0	1.6	0.04
Wall sit	4.0	1.4	4.0	0.9	5.0	1.5	3.0	1.2	0.05
V-up	3.0	0.8	3.0	0.8	4.0	1.0	3.0	1.2	0.02
Total strength score	11.0	6.3	11.0	5.9	16.0	6.6	10.0	6.8	0.02
Strength and Agility score	e 33.1	7.9	34.2	6.5	40.4	10.2	33.9	8.1	0.01

Wrap up the lecture

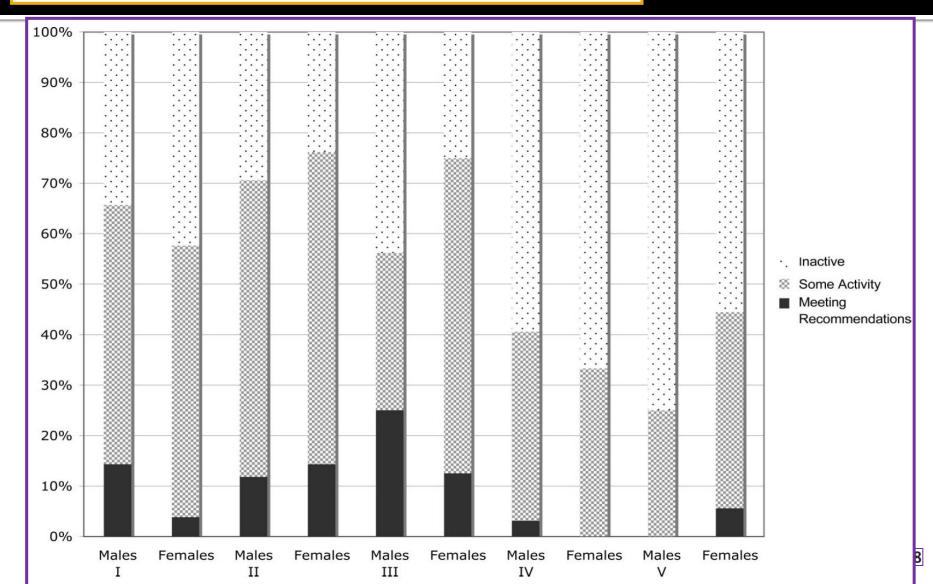
- Strengthening exercises
 - Improve strength
 - Safe and feasible
 - But, limited functional adaptation
- Stretching exercises
 - Less conclusive
 - Limited positive evidence

Evidence ?of Stretching or Strengthening




- Neuro-plasticity (Neuromodulation)
- Muscle plasticity (Increased ROM and strength)

=> Individualized/goal oriented task training


Pediatric rehabilitation

Evidences of stretching and strengthening

Description of Exercise Participation of Adolescents With Cerebral Palsy Across a 4-Year Period

=> Exercise guideline in CP or other pediatric disable children

- School based exercise
- Home based exercise

- 감사합니다.