2015 소아재활발달의학회 춘계연수강좌

CIMT (Constraint-**Induced Movement** Therapy) VS HABIT (Hand-Arm **Bimanual Intensive** Therapy)

경북대학교병원 재활의학과 민유선

2015.04.04

CONTENTS

- CIMT
- HABIT
- CIMT vs HABIT ?
- Recommendation
- Clinical Message
- Reference

CIMT

- Cerebral Palsy(CP)
- Spastic Hemiplegic CP
- Constraint-Induced Movement Therapy(CIMT)
 - based on research by Edward Taub, a behavioral neuroscientist
 - Monkey deafferentation
 - the brain to "rewire" itself following a major injury such as stroke or traumatic brain injury (neuroplasticity)
 - Patients can "learn" to improve the motor ability of the more affected parts of their bodies and thus cease to rely exclusively or primarily on the less affected parts.

- Features of CIMT
 - Constraint of the non-affected limb
 - Forced use of the involved upper extremity
 - Intensive treatment
 - Education of parents

Taub et al. 2006

Gordon et al 2005, Taub et al 2004

Hand rehabilitation in children

- Improved hand-movement efficiency
 - Hands to midline
 - forearm supination and pronation
 - transferring a cube between hands
 - ulnar/palmer grasping with the hands
- Investigated the protocol (length, frequency of treatment, populations participating)
 - 21 days, 6 hours / day, 126 hours
 - Modified CIMT protocol

Case-Smith et al 2010, Deluca et al 2004, Taub et al 2004

Type of restraint

- Non removable
- Bi-valve casts
- Slings
- Splints
- Glove/mitts

 Table I: Considerations for selecting training environment and restraint type

Location

Individual treatment Less distraction 1:1 therapist/child ratio Home/school Direct practice in everyday environment Activity selection varies depending on specific environment Can be intrusive to family/classroom Distracting? Day camp Social Potential for modeling/support Distracting? Reduced treatment intensity if <1:1 ratio? But can supplement with non-clinicians!

Restraint selection

Casts Greater treatment intensity? **Restrict mirroring?** ¹Compliance? Uncomfortable Slings Comfortable Provide too much choice? No protective response Gloves/mitts Comfortable Allows gross bimanual assist Reduced treatment intensity? No evidence of better efficacy for any restraint type. Select best for individual environment and least-invasive. Needed at all?

Outcome Measurement

Classification

MACS(Manual Ability Classification System)

Goal Setting

COPM
 (Canadian Occupational Performance Measure)
 GAS
 (Goal Attainment Scaling)

Activity - Unilateral

MA2
(Melbourne Assessment 2)
QUEST
(Quality of Upper Extremity Skills Test)

Activity - Bilateral

AHA
 (Assisting Hand Assessment)

– ABILHAND-Kids

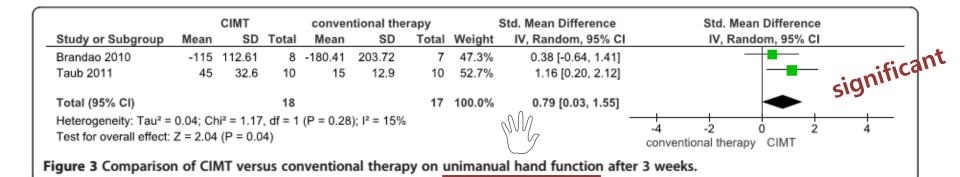
– CHEQ

(Children's Hand-Use Experience Questionnaire)

Assessment Category	Assessments	1-2 yrs	3 yrs	4-7 yrs	8-18 yrs	Adult
Classification Tool	Manual Ability Classification System (MACS) (Eliasson 2006 [2a])			x	x	
Individualized Patient Family	Canadian Occupational Performance Measure (COPM) (Law 2005 [5])	X Care- giver Report	X Care- giver Report	X Care- giver Report	X Client if possible	X Client if possible
Goals	Goal Attainment Scaling (Kiresuk 1994 [5])	x	x	x	x	x
Antinin	Melbourne Assessment 2 (MA2) (Randall 1999 [5])	2.5		\rightarrow	15	
Activity - Unimanual Capacity	Quality of Upper Extremity Skills Test (QUEST) (DeMatteo 1992 [5])	1.5		\rightarrow	8	
	Assisting Hand Assessment (Krumlinde- Sundholm 2007 [2a])	1.5		\rightarrow	12	
Activity - Bimanual Performance	ABILHAND- Kids (Arnould 2004 [5])				6 → 15	
	Children's Hand-Use Experience Questionnaire (CHEQ) (Skold 2011 [2a])			6 →	• 18	

RESEARCH ARTICLE

Open Access

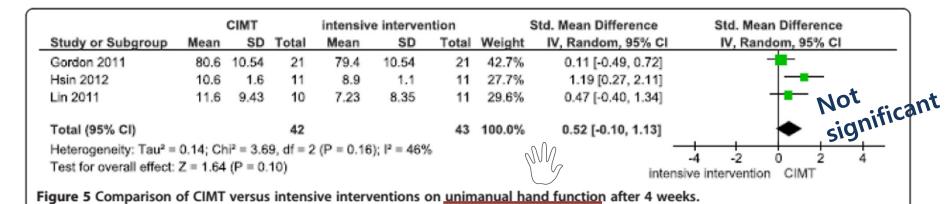

Intensive training of motor function and functional skills among young children with cerebral palsy: a systematic review and meta-analysis

Hilde Tinderholt Myrhaug^{1,2*}, Sigrid Østensjø^{1†}, Lillebeth Larun^{2†}, Jan Odgaard-Jensen^{3†} and Reidun Jahnsen^{1,4†}

- Inclusion criteria
 - (1) Age < 7 years
 - (2) Motor function(mobility,grasping), Functional skill training (eating, playing) Three times or more per week at the clinic , in the kindergarten, or at home
 - (3) Comparison with another intervention conventional therapy another type of intensive intervention

- Intensive training
 - > 2 times per weeks

CIMT vs Conventional therapy

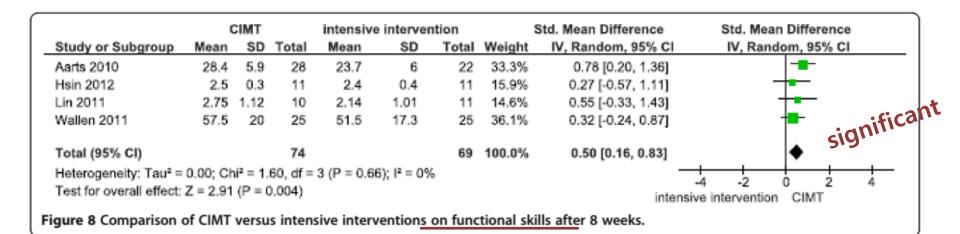


	(CIMT		convent	tional ther	rapy	, j	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Al-Oraibi 2011	48	11.7	7	56.6	18.7	7	23.5%	-0.52 [-1.59, 0.56]	
Eliasson 2005	-1.63	2.91	21	-2.06	3.11	20	43.6%	0.14 [-0.47, 0.75]	
Eliasson 2011	59	9	12	46	21	13	32.9%	0.77 [-0.05, 1.58]	Not
Total (95% CI)			40			40	100.0%	0.19 [-0.44, 0.82]	Not signific
Heterogeneity: Tau ² =	0.14; Cł	ni² = 3.	59, df =	2 (P = 0.1	7); l² = 44	1%	$\mathcal{M}\mathcal{A}$	\mathcal{M}_{2}	
Test for overall effect:	Z = 0.60	(P = 0).55)						ntional therapy CIMT

Figure 4 Comparison of CIMT versus conventional therapy on bimanual hand function after 8 weeks.

- CIMT > Conventional therapy
 - On unimanual hand function
 - Not bimanual hand function

CIMT vs intensive intervention



Std. Mean Difference Std. Mean Difference CIMT intensive intervention Total Weight IV. Random, 95% CI IV, Random, 95% CI Study or Subgroup SD Total Mean SD Mean 60.1 15.3 53.1 22.2 22 30.4% 0.37 [-0.19, 0.93] Aarts 2010 28 0.8 1.73 21 0.94 1.76 21 26.3% -0.08 [-0.68, 0.53] Gordon 2011 0.58 [-0.30, 1.45] Lin 2011 3.1 3.18 10 2.3 11 12.5% 1.45 significant Not Wallen 2011 62.9 29.3 25 52 28.9 25 30.8% 0.37 [-0.19, 0.93] Total (95% CI) 79 100.0% 0.28 [-0.03, 0.59] 84 Heterogeneity: Tau² = 0.00; Chi² = 1.98, df = 3 (P = 0.58); l² = 0% NM MA Test for overall effect: Z = 1.75 (P = 0.08) intensive intervention CIMT Figure 6 Comparison of CIMT versus intensive interventions on bimanual hand function after 8 weeks.

• CIMT is **not superior** to intensive intervention on unimanual or bimanual hand function?

CIMT on functional skills

	(СІМТ		convent	ional the	rapy	5	Std. Mean Difference		Std. M	lean Differ	rence	
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Ra	andom, 95	i% Cl	
Irandao 2010	74.46	9.88	8	69.15	6.31	7	26.3%	0.59 [-0.45, 1.64]					
Sung 2005	25.44	5.82	18	21.15	8.73	13	49.1%	0.58 [-0.15, 1.31]			┼┲╌	-	
aub 2004	2.8	1.14	9	1.2	0.82	9	24.6%	1.53 [0.45, 2.62]				•	signific
otal (95% CI)			35			29	100.0%	0.82 [0.26, 1.38]			-	•	ביכ
leterogeneity: Tau ² =	0.03; Cł	ni² = 2.	25, df =	2 (P = 0.3	2); l² = 11	%		-	-	-2	<u> </u>	-	
est for overall effect:	Z = 2.85	5 (P = 0	0.004)						conven	-∠ tional ther	apy CIM1	ΓŹ	4

CIMT is superior to another therapy on functional skills

Neuroplasticity in CIMT

Changes in diffusion tensor tractographic findings associated with constraint-induced movement therapy in young children with cerebral palsy

Jeong-Yi Kwon^a, Won Hyuk Chang^{a,b}, Hyun Jung Chang^{a,c}, Sook-Hee Yi^d, Min-Young Kim^a, Eun-Hye Kim^c, Yun-Hee Kim^{a,b,*}

^a Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea ^b Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Republic of Korea ^c Department of Physical and Rehabilitation, Medicine, Samsung Changwan Hospital, Sungkyunkwan, University, School of Medicine, Republic of Ko

- Hemiplegic CP
- N=19 (CIMT=10, conventional =9)
- tailored plastic long-arm bivalved casts
- Intervention
 - CIMT : concentrated, repetitive training of the affected upper arm
 - for 6 h per day, 5 days per week for 4 consecutive weeks (total, 120 h)
 - OTx, PTx provided 2 h of therapy per day for 4 weeks
 - Conservative : 2 h of conventional occupational therapy per week for 4 weeks

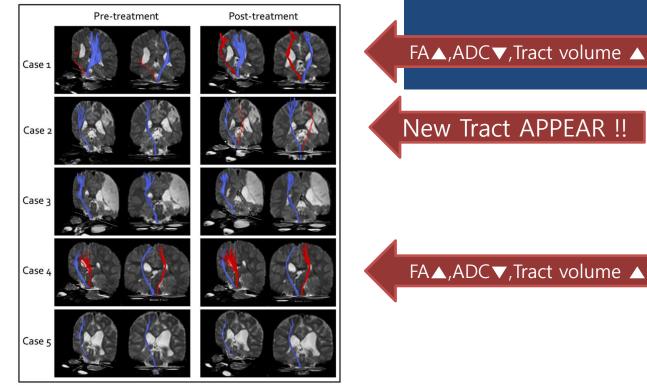


Fig. 1. Diffusion tensor tractography (DTT) at pretreatment and posttreatment in five participants. Affected and unaffected corticospinal tracts (CSTs) are demonstrated with

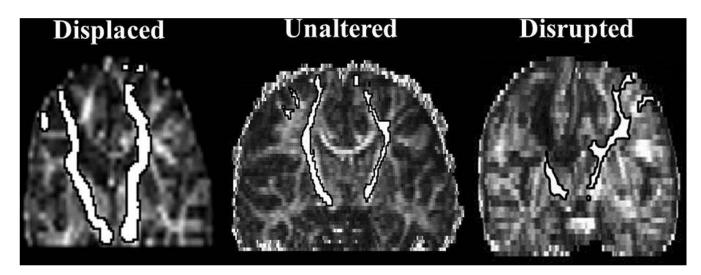
Table 3

Changes in the properties of corticospinal tract in diffusion tensor tractography.

	Pretreat	ment					Posttre	atment				
	Parameter			Asymmetric index		Parameter			Asymmetric index			
	FA	ADC	Number of fibers	FA	ADC	Number of fibers	FA	ADC	Number of fibers	FA	ADC	Number of fibers
CIMT gro	up											
Case 1	0.448	1.007	5	0.7	-1.6	48.2	0.475	0.850	101	0.4	1.6	30.9
Case 2	-	-	-	50.0	50.0	50.0	0.478	0.990	2	-2.6	3.5	48.4
Case 3	-	-	-	50.0	50.0	50.0	-	-	-	50.0	50.0	50.0
Case 4	0.475	0.889	62	-1.1	2.5	6.3	0.517	0.865	61	-4.9	0.2	10.9
Case 5	-	-	-	50.0	50.0	50.0	-	-	-	50.0	50.0	50.0

ADC, apparent diffusion coefficient; FA, fractional anisotropy; CIMT, constraint-induced movement therapy.

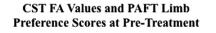
CST reorganization in young children with CP in CIMT


Archives of Physical Medicine and Rehabilitation journal homepage: www.archives-pmr.org Archives of Physical Medicine and Rehabilitation 2014;95:506-14

ORIGINAL ARTICLE

Diffusion Tensor Imaging Study of the Response to Constraint-Induced Movement Therapy of Children With Hemiparetic Cerebral Palsy and Adults With Chronic Stroke

Tyler Rickards, MA,^a Chelsey Sterling, MA,^a Edward Taub, PhD,^a Christi Perkins-Hu, PhD,^b Lynne Gauthier, PhD,^c Michael Graham, BS,^a Angi Griffin, MA,^d Drew Davis, MD,^e Victor W. Mark, MD,^{a,f,g} Gitendra Uswatte, PhD^{a,h}


From the "Department of Psychology, University of Alabama at Birmingham, Birmingham, AL; "Department of Psychology, LaGrange College, LaGrange, GA; "Department of Physical Medicine and Rehabilitation, Ohio State University, Columbus, OH; "Physical Therapy and Occupational Therapy Department, Children's of Alabama, Birmingham, AL; "Department of Pediatrics, Division of Pediatric Rehabilitation Medicine, and "Departments of Physical Medicine and Rehabilitation, "Neurology, and "Physical Therapy, University of Alabama at Birmingham, Birmingham, AL.

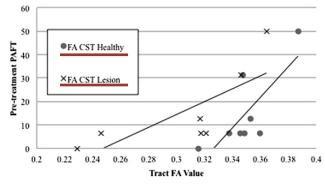


Fig 1 Probabilistic tractography example of disrupted, displaced, and unaltered CSTs, in white (outlined in black) overlaid onto the whole-brain FA image. White spots in the cortex that appear disconnected from the CST pathways are remnants of the branches of the tract whose continuity is apparent in adjoining slices.

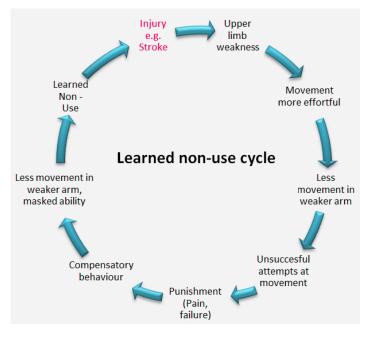
Table 2 Clinical of	outcomes			
Outcome Measures	Pretreatment	Posttreatment	Change	d'*
Study 1 PMAL-R (points)	1.7±0.8	4.0±0.8	2.3±0.9 [†]	2.67
PAFT limb preference (%)	14.9±17.0	50.8±17.5	35.9±18.2 [†]	1.97

Fig 2 From study 1, a scatterplot of pretreatment mean FA values of the ipsilesional and contralesional CST and PAFT limb preference scores.

Table 3	Clinical results of p	participants who	received CI therapy	with disrupted,	distorted, a	and unaltered i	psilesional CSTs

Study 1		PMAL-R			PAFT Limb Preference Score			
Ipsilesional CST Status	Pre	Post	Change	Pre	Post	Change		
Disrupted/displaced* [†]	1.5±0.9	3.5±0.7	2.0±1.0	4.7±3.2	40.7±19.4	35.9±18.7		
Unaltered [‡]	2.0±0.5	4.7±0.2	2.7±0.6	25.0±19.8	61.0±7.9	35.9±18.7		

- Reduced integrity, displacement, or interruption of their CST performed worse on pretreatment motor testing.
- However, all groups have their ability to benefit from CI therapy.


Considering factor in children

- "Learned non-use" in adult
- "Never learned" in children
 - 'Developmentally' focused on motor learning principles

Gordon et al 2011

- Maturation of corticospinal connection
 - Depend on activity
 - Early intensive restraint risks damage to the non-paretic upper extremities
 Martin et al 2009
- CIMT focused on unimanual impairments, However, BIMANUAL ACTIVITIES is important
 - Motor planning, Two hand coordination, Functional independence, QOL

Are Two Hands Better Than One?

- In normal development
 - More active hemisphere "winning out"

Martin et al 2009

- Balancing of hemisphere after unilateral brain damage
 - Improve corticospinal connectivity
 - Restore motor function

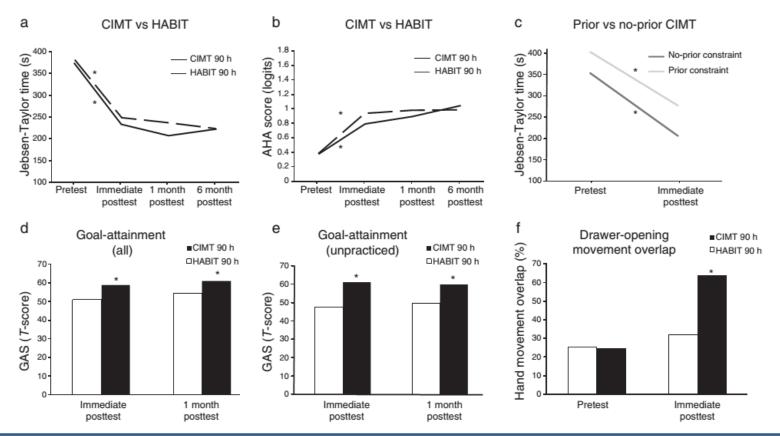
Anttila et al 2008

- Practice bimanual activities directly !
 - Based on 'Motor learning principle'
 - Most functional way
 - balance the cortical activity
 - improve bimanual control

Gordon et al 2011

HABIT (Hand Arm Bilateral Intensive Training)

- HABIT
 - Often used by clinicians treating the upper extemities
 - Maintain intensity
 - Progressive task-specific practice associated with CIMT
 - Engaged in **bimanual tasks**
 - Affected hand use progressed from passive stabilizer to active manipulator



Charles, Gordon et al 2006

To constrain or not to constrain, and other stories of intensive upper extremity training for children with unilateral cerebral palsy

ANDREW M GORDON Department of Biobehavioral Sciences,	Table II: Criteria for selection of cons (CIMT) or bimanual training	straint-induced mover	ment therapy
		CIMT	Bimanual training
	Dexterity	~	~
	Bimanual assist quality	~	~
	Frequency of use	~	~
	Function (goals)		~
	Coordination of two hands		~
	Mild hemiplegia		~
	Severe hemiplegia		~
	Reduce impairments	~	
	Low IQ	?	
	Behavioral problems	?	
	Restraint tolerance problems		~
	Short duration available	?	
	Diversity of activities		~
	Ease of administering	~	

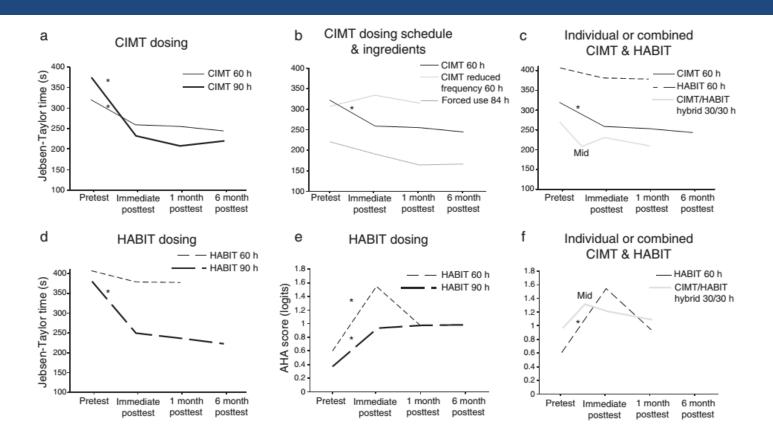
✓, preferred training protocol; ?, hypothesized.

HABIT = CIMT

- JHFT, AHA
- HABIT > CIMT
 - Greater in goal attainment
 - Greater in unpracticed goal attainment
 - Better transfer of practice
 - Combined CIMT/bimanual training leads to improved action planning
 - Bimanual coordination improved more when practiced directly

Age - Is earlier better ?

- No evidence that age influences CIMT/HABIT outcome (From 7 months to 30 years)
- No different in CIMT outcomes
 - In age 4 8 vs 9 -13 years
 - Not similar mechanism
 - Older children generally attend to task more, work harder for gain


Gordon 2006, 2011

Deluca 2006, Kuhnke 2006

- Altered corticospinal wiring has already occurred by the time the first signs of hemiplegia emerge at approximately 6 months.
- Thus, early treatment of infants at risk may be warranted

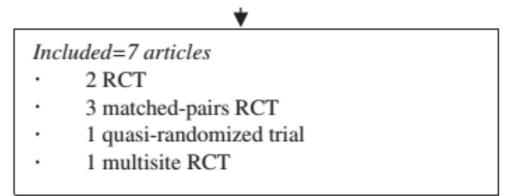
Martin 2011

Intensity - How much is enough?

- More intensity induce favorable outcome in CIMT, HABIT
- Increased frequency is also important

CIMT vs HABIT

CIMT ?


CIMT vs HABIT

Developmental Neurorehabilitation, April 2013; 16(2): 133-143

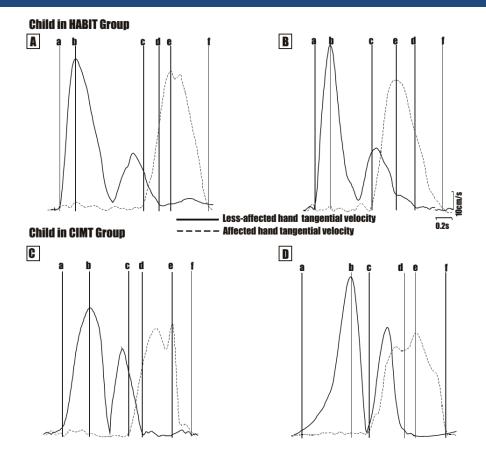
Studies comparing the efficacy of constraint-induced movement therapy and bimanual training in children with unilateral cerebral palsy: A systematic review

VICKY AN-QIN DONG, IVY HSI-HSUAN TUNG, HESTER WAI-YI SIU, & KENNETH NAI-KUEN FONG

Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, PR China

Contents lists available at ScienceDirect

Research in Developmental Disabilities


The effect of intensive bimanual training on coordination of the hands in children with congenital hemiplegia

Ya-Ching Hung^{a,*}, Lorenzo Casertano^b, Andrew Hillman^a, Andrew M. Gordon^b

^a Department of Family, Nutrition, and Exercise Sciences, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA ^b Department of Biobehavioral Sciences, Teachers College, Columbia University, 525 West 120th Street, Box 199, New York, NY 10027, USA

Research in Developmental Disabilities 32 (2011) 2724-2731

- Hemiplegic CP
- N=20 (CIMT=10, BIT=10), Age = 4-10 (Mean 6.8)
- $6h/day \ge 15 days = 90h$
- Intervention
 - CIMT : unimanual activities with the affected limb, such as playing Connect-4 with affected hand; less-affected hand restrained by slings
 - BIT : bimanual activities such as cutting paper with the other hand orienting it
- Outcome measurements
 - Drawer opening, AHA

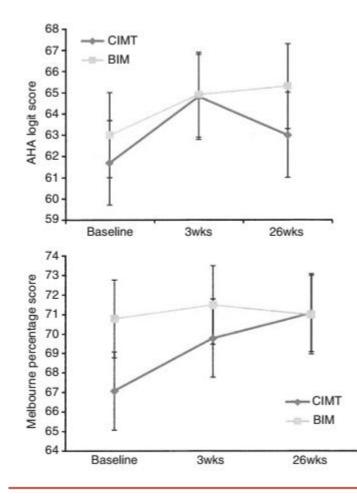
Fig. 2. Tangential velocity kinematic traces of one child with hemiplegia from each treatment group using the less-affected hand (solid traces) to open the drawer and the affected hand (dashed traces) to activate the switch. (A) Child in the HABIT group before the treatment, (B) the same subject after the HABIT treatment, (C) child in the CIMT group before the treatment, (D) the same child after the CIMT treatment. (a) Movement onset of the drawer hand. (b) Drawer hand peak tangential velocity for reaching to the drawer. (c) Onset of movement for the less-affected hand as the task hand. (d) Movement offset of the drawer hand. (e) Peak tangential velocity of the task hand. (f) Movement offset of the task hand. (c-d) Movement overlap time for the two hands. (d-f) Goal synchronization duration. Note that the velocity traces of the task hand terminate above zero if the hand does not decelerate before contacting the switch. All traces share the same scale.

Table 2Average kinematic outcomes for participants.

Measurements (SD)	Habit (<i>n</i> = 10)	Control (<i>n</i> = 10)
Pre LAH movement overlap	24.82% (14.20)	25.54% (15.57)
Post LAH movement overlap	63.95% (35.29)	34.13% (10.43)
Pre AH movement overlap	21.14% (15.73)	17.59% (9.92)
Post AH movement overlap	21.54% (11.74)	21.53% (9.46)
Pre LAH goal synchronization, s	1.29 (0.44)	0.94 (0.39)
Post LAH goal synchronization, s	0.54 (0.30)	0.62 (0.32)
Pre AH goal synchronization, s	0.97 (0.30)	0.77 (0.24)
Post AH goal synchronization, s	0.59 (0.20)	0.64 (0.31)
Pre LAH movement time, s	2.58 (0.89)	2.11 (0.70)
Post LAH movement time, s	2.71 (0.32)	2.29 (0.53)
Pre AH movement time, s	3.78 (1.70)	2.62 (0.64)
Post AH movement time, s	3.46 (0.88)	2.93 (0.64)
Pre LAH task hand peak v, cm/s	63.54 (11.47)	70.91 (8.10)
Post LAH task hand peak v, cm/s	70.67 (17.90)	83.15 (12.40)
Pre AH task hand peak v, cm/s	78.34 (20.70)	82.07 (9.13)
Post AH task hand peak v, cm/s	84.07 (15.33)	76.57 (14.15)

Abbreviations: LAH, less-affected hand as the drawer hand; AH, affected hand as the drawer hand; SD, standard deviation; s, seconds; v, velocity.

- Both group improvement on task completion time and AHA
 - BIT group > CIMT group
 - Bimanual coordination in daily activities


Randomized trial of constraint-induced movement therapy and bimanual training on activity outcomes for children with congenital hemiplegia

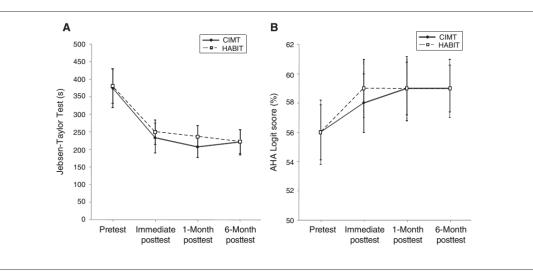
LEANNE SAKZEWSKI^{1,2,3} | JENNY ZIVIANI³ | DAVID F ABBOTT^{2,4} | RICHARD A L MACDONELL^{2,4,5} | GRAEME D JACKSON^{2,4,6} | ROSLYN N BOYD^{1,2} Developmental Medicine & Child Neurology 2011, 53: 313–320

- Hemiplegic CP
- N=63(CIMT=32, BIT=31), Age = 5-16 (M=10.2)
- 6h/day x 10 days = 60h in intensive day camp
- Intervention
 - Both groups provided with fine motor activities, functional goals, activities, 2-h circus training, gross UL games & debriefing.
 - BIT gp: explicit instructions on how each hand should be used before bimanual activities.
 - CIMT gp: wearing a glove on unaffected hand to prevent grasp during unimanual activities
- Outcome measurements
 - MUUL, AHA / Grip, Moving 2-pt, JTTHF

Table III: Difference and changes over time for activity outcomes between CIMT and BIM training groups

	Difference bet	ween groups	Change	e in CIMT	Change in BIM		
Baseline to	3wks ^a	26wks ^b	3wks ^c	26wks ^c	3wks ^c	26wks ^c	
Estimated m	ean difference (95% CI)	d					
MUUL	1.8 (-0.3 to 4.0)	4.4 (2.2 to 6.7)	2.8 (1.2 to 4.3)	4.5 (2.9 to 6.1)	0.9 (-0.6 to 2.5)	0.0 (-1.5 to 1.6)	
	0.1	<0.001	< 0.001	< 0.001	0.3	0.9	
AHA	1.2 (-1.2 to 3.5)	-0.7 (-3.1 to 1.7)	3.1 (1.4 to 4.7)	1.6 (-0.1 to 3.4)	1.9 (0.2 to 3.6)	2.3 (0.6 to 4.0)	
	0.3	0.6	<0.001	0.06	0.03	0.008	
JTTHF	-11.1 (-41.7 to 19.4)	-25.7 (-57.0 to 5.7)	-26 (-47.6 to -4.4)	-60 (-82.5 to -37.5)	-14.9 (-36.3 to 6.5)	-34.3 (-56.2 to -12.	
	0.5	0.1	0.02	< 0.001	0.2	0.002	

- CIMT = BIT
 - AHA, JTTFH
- CIMT group > BIT group
 - MUUL


Research Articles

Bimanual Training and Constraint-Induced Movement Therapy in Children With Hemiplegic Cerebral Palsy: A Randomized Trial

Neurorehabilitation and Neural Repair 25(8) 692–702 © The Author(s) 2011 Reprints and permission: http://www. sagepub.com/journalsPermissions.nav DOI: 10.1177/1545968311402508 http://nnr.sagepub.com (3)

Andrew M. Gordon, PhD^{1,2}, Ya-Ching Hung, Ed.D.³, Marina Brandao⁴, Claudio L. Ferre, MA¹, Hsing-Ching Kuo, MS¹, Kathleen Friel, PhD⁵, Electra Petra¹, Ashley Chinnan¹, and Jeanne R. Charles, PhD⁶

- Hemiplegic CP
- N=42(CIMT=21, BIT=21), Age = 3.5-10 (M=6.3)
- $6h/day \ge 15 days = 90h in day camp$
- Intervention
 - Both gps shared common intensive progressive task practice based on motor learning
 - BIT : absence of restraint and tasks were progressed bimanually. Children engaged in ageappropriate fine- and gross-motor bimanual activities such as stabilizing paper while drawing, reorienting paper while cutting.
 - CIMT : less-affected hands were restrained with slings and unimanual activities performed with paretic hands. Children performed fine- and manipulative gross-motor activities, including age-appropriate, unimanual functional and play activities
- Outcome measurements
 - AHA, JTTHF / QUEST, GAS

Figure 2. A. Mean ± standard error of the mean (SEM) time to complete the 6 timed items (writing excluded) of the Jebsen-Taylor Test of Hand Function. Faster times correspond to better performance. The maximum allowable time to complete each item was 180 s, resulting in a maximum score of 1080 s. B. Mean ± SEM scaled logit scores on the AHA; higher scores represent better performance. Abbreviations: CIMT, constraint-induced movement therapy; HABIT, Hand-Arm Intensive Bimanual Therapy; AHA, Assisting Hand Assessment.

	Immediate Posttest (95% CI)	I-Month Posttest (95% CI)	6-Month Posttest (95% CI)	Group Effect <i>P</i> Value (Partial η ²)	Test Session Effect P Value (Partial η²)	Interaction PValue (Partial η ²)
GAS (T score—all goals) ^b						
CIMT	51.0 (47.5, 54.4)	54.5 (51.5, 57.6)	59.0 (55.8, 62.3)	—	—	_
HABIT	59.1 (55.6, 62.7)	61.3 (58.1, 64.4)	63.8 (60.5, 67.0)	—	—	_
Mean	55.0 (52.6, 57.5)	57.9 (55.7, 60.1)	61.3 (58.9, 63.7)	P < .001 (.264)	P < .001 (.235)	P = .412 (.022)
GAS (T score—unpractice	ed)					
CIMT	47.5 (39.4, 55.6)	49.5 (42.9, 56.1)	59.5 (53.5, 65.5)	—	—	
HABIT	60.0 (50.3, 69.7)	60.7 (52.8, 68.6)	61.4 (54.2, 68.7)	—	—	_
Mean	53.8 (47.4, 60.1)	55.1 (50.0, 60.3)	60.5 (55.8, 65.2)	P < .05 (.258)	P = .076 (.158)	P = .174 (.110)

Abbreviations: CIMT, constraint-induced movement therapy; HABIT, Hand-Arm Intensive Bimanual Therapy; CI, confidence interval; GAS, Goal Attainment Scale.

^aOther play activities included braiding hair, holding a book or cards, playing with Legos, dressing a doll, and using a remote car. ^bAverage of functional and play T scores; Mean, refers to the mean of the CIMT and HABIT groups.

- BIT = CIMT
 - on AHA, JTTHF
- BIT group > CIMT group
 - On GAS

ORIGINAL RESEARCH ARTICLE

Multisite Trial Comparing the Efficacy of Constraint-Induced Movement Therapy with that of Bimanual Intensive Training in Children with Hemiplegic Cerebral Palsy

Postintervention Results

ABSTRACT

Facchin P, Rosa-Rizzotto M, Visonà Dalla Pozza L, Turconi AC, Pagliano E, Signorini S, Tornetta L, Trabacca A, Fedrizzi E, GIPCI Study Group: Multisite trial comparing the efficacy of constraint-induced movement therapy with that of bimanual intensive training in children with hemiplegic cerebral palsy: postintervention results. Am J Phys Med Rehabil 2011;90:539–553. (4)

Am. J. Phys. Med. Rehabil. • Vol. 90, No. 7, July 2011

- Hemiplegic CP
- N=105(CIMT=39, BIT=33, Control=33), Age = 2-8
- 3h/day x 30 days = 90h in rehab center
- $4h/day \ge 30 days = 120h at home$
- Intervention
 - BIT (IRP) gp: implied a bimanual use in play and ADLs.
 - mCIMT gp: using affected hand during training program and wearing a fabric glove with a built-in volar stiff plastic splint on the dominant hand to prevent fingers flexing and grasping.
 - ST gp (Control gp): children undergoing 1 h standard treatment sessions once or twice a week
- Outcome measurements
 - Bests Scale, QUEST / General assessment, Cognitive level, GMFM

		ЙТ vs. IRP,	
	mCIMT <i>vs</i> . ST	mCIMT <i>vs</i> . IRP	IRP <i>vs.</i> ST
Besta Scale			
Global score	0.0536^{a}	0.3797	0.0336^{a}
Grasp	0.0463^{a}	0.0591	0.4359
Bimanual	0.3860	0.3960	0.2195
spontaneous use			
ADL (2-6 yrs)	0.1217	0.4772	0.0610
ADL (7-8 yrs)	0.0073^{b}	0.2944	0.2623
QUEST			
Global score	0.0014^{b}	0.1628	0.0297^{a}
Grasp	0.1401	0.2665	0.4223
Dissociated	0.0241^{a}	0.1515	0.1417
movements			
Protective	0.0173^{a}	0.1363	0.1340
extension			
Weight bearing	0.1722	0.2322	0.0317 ^a
^a P < 0.05, Mann-V	Whitnev test.		
${}^{b}P < 0.01$, Mann-V	*		
mCIMT modified			1

mCIMT, modified constraint-induced movement therapy; IRP, intensive rehabilitation program; ST, standard treatment.

BIT (IRP) = mCIMT

– Besta Scale, QUEST

• mCIMT > ST

- Besta Scale(Global, grasp, ADL), QUEST (Global, Dissociated movement, Protective extension)

• BIT (IRP) > ST

– Besta (global, weight bearing), QUEST (global)

TADLE 4

Conclusion

- CIMT = HABIT
 - Improving impaired arm function, overall functional performance
 - CIMT > HABIT
 - Improving impaired arm function
 - HABIT > CIMT
 - Bimanual, functional tasks

Evidence based guideline

Health Policy & Clinical Effectiveness Program

Evidence-Based Care Guideline

Pediatric Modified Constraint Induced Movement Therapy (mCIMT) plus Bimanual Training (BIT)^a

Publication Date: December 2014

Inclusion criteria

Target Population

Inclusions:

Patients over <u>one year of age^b</u> with:

- unilateral upper extremity impairment(s) associated with neurological conditions (e.g. cerebral palsy, traumatic brain injury, tumor resection, brachial plexus injury, etc.)
- a caregiver able and willing to commit to the time required for daily procedure and follow-up care

Table 1: Measurement Tools by Age Group							
Assessment Category	Assessments	1-2 yrs	3 yrs	4-7 yrs	8-18 yrs	Adult	
Classification Tool	Manual Ability Classification System (MACS) (Eliasson 2006 [2a])			x	x		
Individualized Patient Family Goals	Canadian Occupational Performance Measure (COPM) (Law 2005 [5])	X Care- giver Report	X Care- giver Report	X Care- giver Report	X Client if possible	X Client if possible	
	Goal Attainment Scaling (Kiresuk 1994 [5])	x	x	x	x	x	
Activity - Unimanual Capacity	Melbourne Assessment 2 (MA2) (Randall 1999 [5])	2.5		\rightarrow	15		
	Quality of Upper Extremity Skills Test (QUEST) (DeMatteo 1992 [5])	1.5		\rightarrow	8		
Activity - Bimanual Performance	Assisting Hand Assessment (Krumlinde- Sundholm 2007 [2a])	1.5		\rightarrow	12		
	ABILHAND- Kids (Arnould 2004 [5])				6 ≯ 15		
	Children's Hand-Use Experience Questionnaire (CHEQ) (Skold 2011 [2a])			6 →	• 18		

Table 2: Protocols

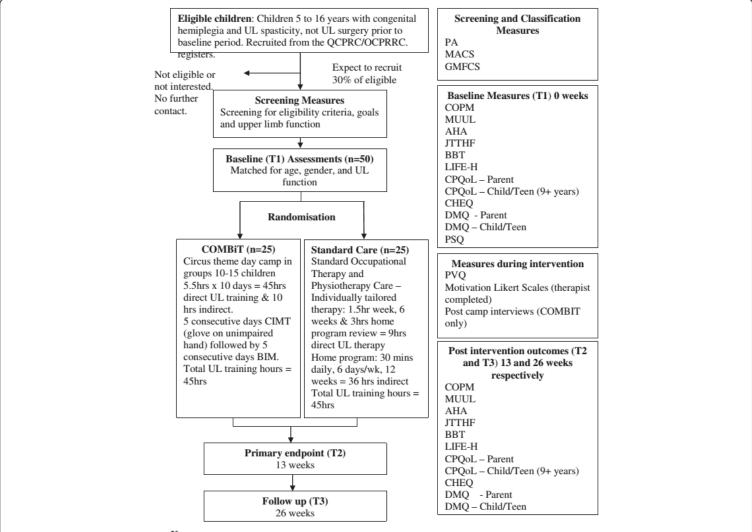
	Protocol 1	Protocol 2	Protocol 3	
Model of Therapy	Intensive	Intensive	Frequent	
Duration of Intervention	3 weeks	6 weeks	8 weeks	
Duration of mCIMT/BIT	2 weeks mCIMT 1 week BIT	4 weeks mCIMT 2 weeks BIT	5 weeks mCIMT 3 weeks BIT	
Dosage of treatment with therapist	1-2 hours per day for at least 3 days per week	1-2 hours per day; 3 days per week	1-2 hours per day for one day per week	
Structured Practice with Caregiver	3 hours per day when not with therapist	2-4.5 hours per week	4-6 hours per week	
Method of Constraint (in alphabetical order)	Ace Wrap Pedi-wrap Splint/Glove Removable Cast	Ace Wrap Pedi-wrap Splint/Glove Removable Cast	Ace Wrap Pedi-wrap Splint/Glove Removable Cast	

(Hoare 2013 [2a], Case-Smith 2012 [2a], Eliasson 2011 [2a], Sakzewski 2011 [2a], Geerdink 2013 [2b], Eliasson 2005 [3a], Gordon 2006 [3b], Charles 2007 [4a], Eliasson 2009 [4b], Vaz 2010 [5a], Martin 2008 [5a])

Dosing

 It is recommended that a combination of mCIMT followed by bimanual training (BIT) be implemented at least 48-63 hours during an episode of care to expect clinically significant results

> (Hoare 2013 , Case-Smith 2012, Eliasson 2011, Sakzewski 2011, Geerdink 2013, Eliasson 2005, Gordon 2006)



STUDY PROTOCOL

Open Access

COMBIT: protocol of a randomised comparison trial of *COM*bined modified constraint induced movement therapy and *bi*manual intensive *t*raining with distributed model of standard upper limb rehabilitation in children with congenital hemiplegia

Roslyn N Boyd^{1,2*}, Jenny Ziviani^{2,3}, Leanne Sakzewski^{1,2}, Laura Miller^{1,2}, Joanne Bowden¹, Ross Cunnington⁴, Robert Ware^{7,8}, Andrea Guzzetta^{1,9}, Richard AL Macdonell^{6,10,11}, Graeme D Jackson^{6,10,12}, David F Abbott^{6,10} and Stephen Rose⁵

Key:-

AHA- Assisting Hand Assessment. BBT- Box and Blocks Test. CHEQ- Children's Hand Use Experience Questionnaire. CPQoL- Adult, Cerebral Palsy Quality of Life – Adult. CPQoL- Child, Cerebral Palsy Quality of Life – Child. COPM- Canadian Occupational Performance Measure. DMQ-Child/Teen, Dimensions of Mastery Questionnaire – Child/Teen. DMQ– Parent, Dimensions of Mastery Questionnaire – Parent. GMFCS – Gross Motor Function Classification System. JTTHF-Jebsen Taylor Test of Hand Function. LIFE-H- Assessment of Life Habits. MACS- Manual Ability Classification System. MUUL- Melbourne Assessment of Unilateral Upper Limb Function. PA-Physical Upper Limb Assessment. SQ- Study Questionnaire. UL- Upper limb. PSQ- Triple P Parenting Scale Questionnaire. PVQ- Pediatric Volitional Questionnaire

Clinical Messages

- CIMT = HABIT
 - Improving impaired arm function, overall functional performance
 - **CIMT** > HABIT
 - Improving impaired arm function
 - HABIT > CIMT
 - Bimanual, functional tasks
- Currently, combination of the CIMT and BIT is suggested
- Optimal component, dosage of intervention, feasibility of home practice shoulder be considered.
- Child friendly, Least invasive as possible
- Not one time miracles
- Clinicians should not constrain their thinking with constraints

Thank you for your attention